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The questions of how a dipole character of the dependence of the form factors GE and GM on
the square of the momentum transfer to a proton, Q2, arise and why a violation of this dependence
occurs, which was first observed in a JLab polarization experiment, are investigated. The answers
to these questions could be obtained owing to the use of the simplest QCD concepts of the proton
structure and the results obtained by calculating the matrix elements of the proton current in the
case of non-spin-flip and spin-flip transitions for protons in the diagonal spin basis (DSB), where
the little Lorentz group common to the initial and final proton states is realized. In DSB, the form
factors GE and GM are determined by the matrix elements Jδ,δ

p , and J−δ,δ
p of the proton current in

the cases of non-spin-flip and spin-flip transitions for protons. In an arbitrary reference frame, the
relations between these matrix elements and the form factors are Jδ,δ

p ∼ GE and J−δ,δ
p ∼

√
τ GM

where τ = Q2/4m2, with m being the proton mass. In considering the problem in question at the
quark level, use is made of the model where the proton consists of three pointlike quarks having
identical masses and where the respective matrix element of the proton current is the product of
three quark-current amplitudes having the form Jδ,δ

q ∼ 1 and J−δ,δ
q ∼

√
τ . It is shown that the

aforementioned dipole dependence arises if the proton spin-flip is due to spin-flip for only one of the
three quarks. As to violations of this dependence, they are caused by the contributions to Jδ,δ

p from

spin-flip transitions for two quarks or by the contribution to J−δ,δ
p from spin-flip transitions for all

three quarks constituting the proton.

PACS numbers: 13.88.+e, 13.40.Gp, 14.60.Fz, 11.80.Cr

Keywords: electron, proton, elastic scattering, form factor, spin-flip, non-spin-flip, matrix elements, dipole
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1. INTRODUCTION

Experiments aimed at studying the proton form fac-
tors, the electric (GE) and magnetic (GM ) ones, which
are frequently referred to as the Sachs form factors, have
been performed since the mid-1950s [1, 2] by using elas-
tic electron-proton scattering. In the case of unpolarized
electrons and protons, all experimental data on the be-
havior of the proton form factors were obtained by using
the Rosenbluth formula [1] for the differential cross sec-
tion for the reaction ep → ep; that is,

dσ

dΩe

=
α2E2 cos

2(θe/2)

4E3
1 sin

4(θe/2)

1

1 + τ

(

G2
E +

τ

ε
G2

M

)

. (1)

Here, τ = Q2/4m2, Q2 = −q2 = 4E1E2 sin
2(θe/2) is

the square of the momentum transfer to the proton and
m is the proton mass; E1, E2 and θe are, respectively, the
initial-electron energy, the final-electron energy, and the
electron scattering angle in the rest frame of the initial
proton; the quantity ε is the degree of virtual photon
linear polarization, ε−1 = 1+2(1+τ) tan2(θe/2); and α =
1/137 is the fine-structure constant. Expression (1) was
obtained in the approximation of one-photon exchange.
In deriving it, the electron mass was set to zero. With
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the aid of Rosenbluth’s technique, it was found that the
experimental dependences of GE and GM on Q2 are well
described up to 10 GeV2 by the dipole-approximation
expression

GE = GM/µ = GD(Q2) ≡ (1 +Q2/0.71)−2 , (2)

where µ is the proton magnetic moment (µ=2.79).
In [3], Akhiezer and Rekalo proposed a method for

measuring the ratio of the Sachs form factors. Their
method relies on the phenomenon of polarization transfer
from the longitudinally polarized initial electron to the
final proton. They showed that the ratio of the degrees
of longitudinal (Pl) and transverse (Pt) polarizations of
the scattered proton has the form

Pl

Pt

= −GM

GE

E1 + E2

2m
tan

θe
2
. (3)

Precision experiments based on employing Eq. (3) were
performed at JLab and were reported in [4, 5]. They
showed that, in the range of 0.5 < Q2 < 5.6 GeV2, there
was a linear decrease in the ratio µGE/GM with increas-
ing Q2:

µ
GE

GM

= 1− 0.13 (Q2 − 0.04) . (4)

This is at contradicts with data obtained with the aid of
Rosenbluth’s technique. According to those data, GE

and GM approximately follow the dipole form up to
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the value of Q2 = 10 GeV2; concurrently, the approxi-
mate equality µGE/GM ≈ 1 must hold. Repeated, more
precise, measurements of the ratio R = µGE/GM by
Rosenbluth’s method [6] only confirmed this contradic-
tion, showing that the magnetic form factor did not dif-
fer within the errors from its counterpart obtained within
Rosenbluth’s technique and that the electric form factor
fell short of the respective value in accordance with Eq.
(4).
In order to resolve this contradiction, it was assumed

that the discrepancy in question may be caused by dis-
regarding, in the respective analysis, the contribution of
two-photon exchange. There appeared a large number of
articles devoted to this problem (see [7]; see also the re-
view article of Arrington et al. [8] and references therein).
At the present time, three experiments aimed at study-
ing the contribution of two-photon exchange are known.
These are an experiment at the VEPP-3 storage ring in
Novosibirsk, the OLYMPUS experiment at the DORIS
accelerator at DESY in Hamburg (Germany), and the
EG5 CLAS experiment at JLab (USA).
In [9], we proposed a method for determining the Sachs

form factors in the process ep → ep on the basis of mea-
suring cross sections for spin-flip and non-spin-flip tran-
sitions for protons.
The objective of the present study is to show that the

fundamental physical meaning of the form factors GE

and GM is associated with their factorization in the ma-
trix elements of the proton current that correspond to
non-spin-flip and spin-flip transitions for protons. It is
precisely this circumstance that explains the appearance
of the squares of the Sachs form factors in Rosenbluth’s
cross section.
Yet another objective of this study is to show that

the mechanism of one-photon exchange is sufficient for
explaining the results of the polarization experiment at
JLab and that violations of the dipole dependence at high
values ofQ2 are due to the contribution of spin-flip quark-
current amplitudes to non-spin-flip and spin-flip transi-
tions for the proton.

2. ON THE PHYSICAL MEANING OF THE
SACHS FORM FACTORS

Rosenbluth’s cross section in the rest frame of the pri-
mary proton (1) has a compact form owing to the de-
composition of G2

E and G2
M . In text-books on particle

physics, it is shown that the physical meaning of the form
factors GE and GM is that, in the Breit frame of the ini-
tial and the final proton, they describe the distributions
of the proton charge and magnetic moment, respectively;
this means that, in the Breit frame, the matrix elements
of the proton current for non-spin-flip and spin-flip tran-
sitions for the proton are expressed in terms of GE and
GM , respectively. Moreover, the Sachs form factors are
advantageous in view of the simplicity of expression (1).
The question of whether there is any physical meaning

behind the decomposition of G2
E and G2

M in Rosenbluth’s
cross section was not raised and not discussed either in
textbooks or in scientific literature published in the last
25 years. Nevertheless, it was shown many years ago in
the article of Sikach [10] that the form factors GE and
GM factorize in the diagonal spin basis (DSB) even at the
level of amplitudes in calculating (in an arbitrary refer-
ence frame) the matrix elements of the proton current in
the cases of non-spin-flip and spin-flip transitions for the
proton.

2.1. Diagonal Spin Basis

In DSB, the spin 4-vectors s1 and s2 of fermions with
4-momenta q1 (before the interaction) and q2 (after it)
have the form [10]

s1 = − (v1v2)v1 − v2
√

(v1v2)2 − 1
, s2 =

(v1v2)v2 − v1
√

(v1v2)2 − 1
, (5)

where v1 = q1/m and v2 = q2/m. Obviously, the spin
4-vectors in (5) satisfy ordinary conditions – that is,
s1q1 = s2q2 = 0 and s21 = s22 = −1 – and are in-
variant under the transformations of the little group of
Lorentz group (little Wigner group [11]) Lq1q2 common
to particles with 4-momenta q1 and q2: Lq1q2q1 = q1 and
Lq1q2q2 = q2. We note that this group is isomorphic
to the one-parameter subgroup of the rotational group
SO(3) with an axis whose direction is determined by the
three-dimensional vector [12, 13]

a = q1/q10 − q2/q20 . (6)

For the two particles in question, the spin projections
onto the direction specified by the vector in Eq. (6) si-
multaneously have specific values [12, 13], and the con-
cept of non-spin-flip and spin-flip transitions acquires an
absolute physical meaning.
The vector a in Eq. (6) is the difference of two three-

dimensional vector, and the geometric image of the dif-
ference of two 3-vectors is a diagonal of the parallelogram
spanned by these two vectors. This is the reason why the
term “DSB” was introduced by academician F.I. Fedorov.
Let us consider the realization of DSB in the initial

proton rest frame, where q1 = (q10, q1) = (m,0). In
this case for the vector a in Eq.(6) we have: a = n2 =
q2/|q2|; that is, the direction of final proton motion is
a common direction onto which one projects the spins
in question. Consequently, the polarization state of the
final proton is a helicity state, while the spin 4-vectors s1
and s2 in (5) have the form

s1 = (0,n2), s2 = (|v2|, v20 n2), (7)

that is, the axes of the spin projections c1 and c2 coincide
with the direction of final-proton motion: c1 = c2 = n2.
The Breit frame, where q2 = −q1, is a particular case

of the DSB.
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2.2. Spin Operators and Calculation of Amplitudes
for QED Processes in DSB

In DSB (5), the spin projection operators σ1 and σ2

for the initial and final Dirac particles with 4-momenta
q1 and q2 coincide, as well as the respective raising and
lowering spin operators σ±δ

1 and σ±δ
2 , by virtue of the

realization of the little Lorentz group Lq1q2 in DSB and
have the form [14, 15]

σ = σ1 = σ2 = γ5ŝ1v̂1 = γ5ŝ2v̂2 = γ5b̂0b̂3,

σ±δ = σ±δ
1 = σ±δ

2 = −i/2γ5b̂±δ, b±δ = b1 ± iδb2,(8)

σuδ(qi) = δuδ(qi), σ
±δu∓δ(qi) = u±δ(qi), δ = ±1,

where uδ(qi) = uδ(qi, si) are the bispinors of the initial
and final states of the particles in DSB; ŝ1 = (s1)µγ

µ,
γ5, γµ are the Dirac matrixes.
In expressions (8), an orthonormalized basis of vectors

bA (A = 0, 1, 2, 3),

(b1)µ = εµνκσb
ν
0b

κ
3b

σ
2 , (b2)µ = εµνκσq

ν
1q

κ
2 r

σ/ρ,

b3 = q−/
√

−q2−, b0 = q+/
√

q2+ , (9)

was used to construct the respective spin operators.
Here, q− = q2 − q1, q+ = q2 + q1, εµνκσ is the Levi-
Civita tensor (ε0123 = −1), r is the participant-particle
4-momentum differing from q1 and q2, and ρ is deter-
mined from the normalization conditions b21 = b22 = b23 =
−b20 = −1.
The matrix elements for QED processes have the form

M±δ,δ = u±δ(q2)Quδ(q1) , (10)

where Q is the interaction operator and uδ(q1) and
u±δ(q2) are the bispinors of, respectively, the initial and
the final state.
In the approach that we use, the calculation of matrix

elements (amplitudes) that have the form (10) and which
correspond to the fermion transition from the initial state
uδ(q1) to the final state u±δ(q2) reduces to evaluating the
trace of the product of Dirac operators [12, 14, 15]; that
is,

M±δ,δ = Tr(P±δ,δ
21 Q) , P±δ,δ

21 = uδ(q1) u
±δ(q2) . (11)

The explicit form of the operators P±δ,δ
21 in DSB that

correspond to non-spin-flip (P δ,δ
21 ) and spin-flip (P−δ,δ

21 )
transitions was obtained in [14, 15] and is given by

P δ,δ
21 = (q̂1 +m) b̂δ b̂0 b̂∗δ/4 , (12)

P−δ,δ
21 = δ(q̂1 +m) b̂δ b̂3/2 , (13)

where b∗δ = b−δ = b1 − iδb2 and bδb
∗
δ = −2.

2.3. Amplitudes of the Proton Current in DSB

In the Born approximation, the matrix element corre-
sponding to the process of elastic electron - proton scat-

tering,

e(p1) + p (q1, s1) → e(p2) + p (q2, s2) , (14)

has the form

Mep→ep = u(p2)γ
µu(p1) · u(q2)Γµ(q

2)u(q1)
1

q2
, (15)

Γµ(q
2) = F1γµ +

F2

4M
(q̂γµ − γµq̂ ) , (16)

where u(pi) and u(qi) are the bispinors of, respectively,
the electrons and protons with 4-omenta pi and qi [ac-
cordingly, we have p2i = m2

e, q
2
i = m2, u(pi)u(pi) = 2me,

and u(qi)u(qi) = 2m (i = 1, 2)]; F1 and F2 are, respec-
tively, the Dirac and Pauli form factors; q = q2 − q1 is
the 4-momentum transfer to the proton; and s1 and s2
are the polarization 4-vectors of, respectively, the initial
and final protons.
The matrix elements of the proton current that cor-

respond to non-spin-flip and spin-flip transitions for the
proton are given by

(J±δ,δ
p )µ = u±δ(q2)Γµ(q

2)uδ(q1) . (17)

With the aid of Eqs. (11) – (13), we can readily show
that the matrix elements of the proton current in (17)
that are calculated in DSB (5) have the form [10, 15]

(Jδ,δ
p )µ = 2mGE(b0)µ , (18)

(J−δ,δ
p )µ = −2mδ

√
τGM (bδ)µ , (19)

GE = F1 +
q2

4m2
F2 , GM = F1 + F2 , (20)

where GE and GM are the Sachs form factors and the
quantities τ = Q2/4m2, Q2 = −q2, q = q− = q2 − q1, b0,
and bδ were defined above.
We note that the amplitudes of the proton current in

(18) and (19) satisfy the conditions of gauge invariance
since, by virtue of the definitions of the 4-vectors b0 and
bδ, the scalar products b0q and bδq are equal to zero. Fur-
ther, the matrix element (Jδ,δ

p )µ of the proton current in
(18) for the non-spin-flip transition for the proton is ex-
pressed in terms of the 4-vector b0. This matrix element
corresponds to the exchange of a virtual photon that has
a scalar polarization (b20 = 1) and which therefore cannot
carry away a spin moment. At the same time, the matrix
element (J−δ,δ

p )µ in (19) for the spin-flip transition for the
proton is expressed in terms of the complex 4-vector bδ.
It corresponds to the exchange of a virtual photon hav-
ing a circular polarization vector (b2δ = 0, bδb

∗
δ = −2) and

carrying away a spin moment, with the result that there
occurs proton spin-flip. Thus, our analysis of expressions
(18) and (19) obtained for the matrix elements in ques-
tion leads to the conclusion that these expressions are
fully adequate to the physical picture of the phenomena
being considered. It follows that the electric and mag-
netic form factors GE and GM acquire a fundamental
physical meaning owing to their factorization in the ma-
trix elements of the proton current for non-spin-flip and
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spin-flip transitions for the proton. It is precisely because
of the factorization of GE and GM in the amplitudes in
Eqs. (18) and (19) that the contributions to Rosenbluth’s
cross section for non-spin-flip and spin-flip transitions for
the proton are controlled by the terms containingG2

E and
G2

M , respectively.

In the case of pointlike particles having a mass m0, the
amplitudes for their currents have the form

(Jδ,δ
q )µ = 2m0 (b0)µ , (21)

(J−δ,δ
q )µ = −2m0 δ

√
τ0 (bδ)µ , τ0 = Q2

q/4m
2
0 . (22)

In the ultrarelativistic massless case, only spin-flip tran-
sitions [see Eqs. (19) and (22)] contribute to the cross
section for the process being considered, since the am-
plitudes in (18) and (21) vanish. At first glance, this
conclusion contradicts the well-known fact that, in the
ultrarelativistic limit, only processes in which the particle
helicity is conserved survive at high energy; that is, only
amplitudes corresponding to non-helicity-flip transitions
do not vanish in the massless limit. Such processes are
frequently referred to as non-spin-flip processes. How-
ever, this terminology is quite uncertain since the par-
ticles involved have different directions of motion before
and after the interaction event. Moreover, it is erroneous
since, in non-helicity-flip processes, the spins of the par-
ticles are in fact flipped at high energies. There is no
contradiction here since, in DSB, the initial state for ul-
trarelativistic particles is a helicity state, while the fi-
nal state has a negative helicity [15] (see Eqs. (A7) and
(A8)), with the result that

M−δ,δ = M−(−λ),λ = Mλ,λ, M δ,δ = M−λ,λ = 0 . (23)

We note that, in addition to the representation in (16)
for Γµ(q

2), the following equivalent representation is used
in the literature for this quantity:

Γµ(q
2) = GMγµ − (q1 + q2)µ

2m
F2 . (24)

On the basis of explicit form (16) and (24) for Γµ(q
2),

in the literature it is likely just starting with the pa-
per of Lepage and Brodsky [17] stated that the Dirac
(Pauli) form factor F1 (F2) corresponds to helicity-non-
flip (helicity-flip) transitions of the proton, respectively.
In fact, it is the form factorGE (GM ) rather than F2 (F1)
[see Eq. (18), (19), (23)] that is responsible for helicity-
flip (helicity-non-flip) transitions at high q1 and q2.

We also note that in the literature sometimes there is
no clear understanding of the physical meaning of the
quantity ε in formula (1). So in [18] written that the
quantity ε is a measure (degree) of the longitudinal po-
larization of the virtual photon. In fact ε is the degree of
linear polarization of the virtual photon (see [3, 19]).

3. ON THE VIOLATION OF THE DIPOLE
CHARACTER OF THE Q2 DEPENDENCE OF GE

AND GM

Since |b0| = 1 and |bδb∗δ | = 2, the Q2 dependence of
the absolute values of the matrix elements of the proton
(18) and pointlike-particle (J±δ,δ

q ) currents can readily
be obtained from Eqs. (18), (19), (21), and (22). The
results are

Jδ,δ
p ∼ 2m GE , J

−δ,δ
p ∼ 2m

√
τ GM , (25)

Jδ,δ
q ∼ 2m0 , J

−δ,δ
q ∼ 2m0

√
τ0 . (26)

We note that the factorization of 2m in expressions (18),
(19), (21), (22), (25), and (26) is due to normalizing the
particle bispinors by the condition ūiui = 2mi. In per-
forming further calculations, it is more convenient to em-
ploy the normalization condition ūiui = 1. Instead of ex-
pressions (25) and (26), we will then use the expressions

Jδ,δ
p ∼ GE , J

−δ,δ
p ∼

√
τ GM , (27)

Jδ,δ
q ∼ 1 , J−δ,δ

q ∼ √
τ0 . (28)

Relations (27) and (28) make it possible to show how
there arise the dipole dependence of GE and GM on Q2

and its violations observed in the aforementioned JLab
experiment. In considering the problem at the quark
level, we will employ, for this purpose, a model where
the proton consists of three pointlike quarks having the
same massm0 and where the respective matrix element of
the proton current is the product of three quark-current
amplitudes having the form Jδ,δ

q ∼ 1 and J−δ,δ
q ∼ √

τ0.
Below, we will show that the dipole dependence arises
at relatively moderate values of the momentum transfer
squared, in which case non-spin-flip quark-current am-
plitudes are dominant. As Q2 grows, the spin-flip quark-
current amplitudes begin making a significant contribu-
tion to expressions (18) and (19), and this ultimately
leads to the dependence in (4).
There are two possibilities for a proton non-spin-flip

transition: (i) none of the three quarks undergoes a spin-
flip transition, and (ii) two quarks undergo a spin-flip
transition, while the third does not. We denote the num-
ber of such ways as nδ,δ

q = [0, 2] in accordance with the
number of quarks involved in a spin-flip process (none or
two).
Proton spin flip can also proceed in two ways: (i) one

quark undergoes a spin-flip transition, while the other
two do not, and (ii) all three quarks undergo a spin-
flip transition. We denote the number of such ways by
n−δ,δ
q = [1, 3] in accordance with the number of quarks

involved in a spin-flip process (one or three). Thus, there
are in all four combinations to be considered:

nδ,δ
q × n−δ,δ

q = (0, 1) + (0, 3) + (2, 1) + (2, 3) . (29)

Of these, the first, (0, 1), corresponds to the dipole de-
pendence of the form factors GE and GM on Q2, in which
case none of the quarks reverses a spin upon the proton
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non-spin-flip transition (the first number in parentheses
is zero); at the same time, the proton spin-flip is due to
the spin-flip for only one quark (the second number in
parentheses is equal to unity).
We obtain GE/GM ∼ 1 for the (0, 1) and (2, 3)

sets in (29), Q2GE/GM ∼ 4m2 for the (0, 3) set, and
Q2GM/GE ∼ 4m2 for the (2, 1) set.

3.1. Dipole Dependence of the Form Factors GE

and GM on Q2, GE/GM ∼ 1

In order to show how there arises the dipole depen-
dence in the behavior of the Sachs form factors, we will
make use of the above expressions (27) and (28) and rely
on a model where a proton consists of three pointlike
quarks having identical masses and where the proton-
current amplitude is the product of three quark-current
amplitudes. It is convenient to represent this conceptual
framework in the form of the following diagrams:

+ →→ ∗ →→→→ +

Jδ,δ
d = − →→→ ∗ →→→ − non-spin-flip, (30)

+ →→→→ ∗ →→ +

+ →→ ∗ →→→→ −
J−δ,δ
d = − →→→ ∗ →→→ − spin-flip . (31)

+ →→→→ ∗ →→ +

The diagram in Eq. (30) corresponds to a proton non-
spin-flip transition for the case where there is no spin
flip for any of the three quarks. It follows that, in this
case, the matrix element of the proton current must be
proportional to GE [see Eq. (27)]. As a result, we have

Jδ,δ
d ∼ GE ∼ 1× 1× 1 × 1

Q4
, (32)

where the factors of unity correspond to non-spin-flip
transitions [see Eq. (28)] for three pointlike quarks of
mass m0 and Q4 arises in the denominator owing to two
gluon propagators. From here, we obtain

GE ∼ 1

Q4
. (33)

The diagram in Eq. (31) corresponds to the transition
where spin-flip occurs for the up quark but does not occur
for the two down quarks; in summary, this corresponds to
the proton spin-flip transition. According to Eqs. (27),
the matrix element of the proton current must be pro-
portional to

√
τ GM in this case. As a result, we have

J−δ,δ
d ∼

√
τ GM ∼ √

τ0 × 1× 1× 1

Q4
. (34)

whence we obtain

GM ∼
√
τ0√
τ

1

Q4
. (35)

The factor
√
τ0 on the right-hand side of Eq. (34) corre-

sponds to the spin-flip transition for the up quark, while
the two factors of 1 correspond to the non-spin-flip tran-
sition for the down quarks; two gluon propagators yield
Q4 in the denominators on the right-hand sides of (34)
and (35). In order to calculate the ratio

√
τ0/

√
τ in Eq.

(35), we assume that the mass of each quark is 1/3 of the
proton mass and that the momentum transfer to each
quark is 1/3 of the momentum transfer to the proton.
This leads to the equality

√
τ0/

√
τ = 1. As a result, we

arrive at

GE ∼ 1

Q4
, GM ∼ 1

Q4
,
GE

GM

∼ 1 . (36)

Thus, the dipole dependence in the behavior of the form
factors arises owing to the contribution to J±δ,δ

p from
only one quark spin-flip transition upon proton interac-
tion with a virtual photon. This dependence is valid at
low Q2, in which case quark non-spin-flip transitions are
dominant. Below, we everywhere set

√
τ0 =

√
τ .

3.2. Dependence GE/GM ∼ 4m2/Q2

For the dipole dependence to be violated, it is neces-
sary that the number of quarks undergoing a spin-flip
transition not be minimal [it is minimal in the case of
(0, 1) set]. Here, we consider the (0, 3) set, in which
case spin-flip transitions for all three quarks contribute
to J−δ,δ

p . This may occur only in the case where momen-
tum transfers to the proton are high. In order to prove
this, we write equalities similar to (32) and (34); that is,

Jδ,δ
p ∼ GE ∼ 1× 1× 1 × 1

Q4
, (37)

J−δ,δ
p ∼

√
τ GM ∼

√
τ ×

√
τ ×

√
τ × 1

Q4
. (38)

From here, we obtain

GE ∼ 1

Q4
, GM ∼ τ

Q4
,
GE

GM

∼ 1

τ
∼ 4m2

Q2
, (39)

Q2 GE

GM

∼ 4m2 = const . (40)

It follows that, for Q2 > 4m2, the ratio GE/GM becomes
smaller than unity. This is one possible way of violation
of the dipole dependence in question. It is due to the
occurrence of the spin-flip process for all three quarks. At
the same time, the dependence that we obtained differs
from the dependence observed at JLab and presented in
Eq. (4).

3.3. The case GE/GM ∼ 1, but both GE and GM

behavior deviate from the dipole

Let us consider the (2,3) spin combination in set (29).
It is generated by spin-flip transitions for two quarks in
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the case of the contribution to Jδ,δ
p and by spin-flip tran-

sitions for all three quarks in the case of the contribution
to J−δ,δ

p . In the case being considered, we have

Jδ,δ
p ∼ GE ∼

√
τ ×

√
τ × 1 × 1

Q4
, (41)

J−δ,δ
p ∼

√
τ GM ∼

√
τ ×

√
τ ×

√
τ × 1

Q4
. (42)

Whence we obtain

GE ∼ τ

Q4
, GM ∼ τ

Q4
,

GE

GM

∼ 1 . (43)

Therefore, the form factor ratio GE/GM behaves in just
the same way as in the dipole model. However, the de-
pendence GE ∼ 1/(4m2Q2) and the dependence GM ∼
1/(4m2Q2) are not of the dipole character (GE ∼ 1/Q4

and GM ∼ 1/Q4), such dependences not being observed
in the experiment.

3.4. Dependence GE/GM ∼ Q2/4m2

Let us now consider the (2,1) spin combination in set
(29). It is generated by spin-flip transitions for two
quarks in the case of the contribution to Jδ,δ

p and by
spin-flip transitions for only one quark in the case of the
contribution to J−δ,δ

p . Following the same line of reason-
ing as above, one can readily show that, for the (2,1) set,
GE and GM have the form

GE ∼ τ

Q4
, GM ∼ 1

Q4
, (44)

that is, the ratio GE/GM behaves as

GE

GM

∼ τ ∼ Q2

4m2
, Q2 GM

GE

∼ 4m2 = const . (45)

3.5. Spin Parametrization for GE/GM

The non-spin-flip and spin-flip proton-current ampli-
tudes (Jδ,δ

p and J−δ,δ
p , respectively) can be represented

as the linear combinations

Jδ,δ
p = α0 J

δ,δ
q J−δ,−δ

q Jδ,δ
q + α2 J

−δ,δ
q Jδ,−δ

q Jδ,δ
q , (46)

J−δ,δ
p = β1J

−δ,δ
q Jδ,δ

q J−δ,−δ
q + β3 J

−δ,δ
q Jδ,−δ

q J−δ,δ
q , (47)

where the coefficients α0, α2, β1 and β3 have a clear phys-
ical meaning and their indices determine the number of
quarks undergoing spin-flip transitions and contributing
to proton non-spin-flip and spin-flip transitions. With
the aid of Eqs. (46) and (47), one can readily obtain a
general expression for the ratio GE/GM . The result is

GE

GM

=
α0 + α2 τ

β1 + β3 τ
. (48)

This expression may serve as a basis for constructing a
spin parametrization and fits to experimental data ob-
tained by measuring the ratio GE/GM .
Because of the requirement that the dipole dependence

hold for τ ≪ 1, the coefficients α0 and β1 in Eq. (48)
must obviously be close to unity: α0 ∼ 1 and β1 ∼ 1.
With allowance for this comment, we expand the right-
hand side of (48) in a power series for τ ≪ 1. As a
result, we arrive at the law of a linear decrease in the
ratio GE/GM as Q2 increases; this law agrees with the
law in (4) established experimentally in [5]:

GE

GM

∼ 1− (β3 − α2)

4m2
Q2 . (49)

Thus, the measurement of the ratio GE/GM provides
valuable insights into the proton and to determine the
number of its quarks whose spins were reversed.

Conclusion

The questions of how a dipole character of the depen-
dence of the form factors GE and GM on the square of
the momentum transfer to a proton, Q2, arise and why
a violation of this dependence occurs, which was first
observed in a JLab polarization experiment, are investi-
gated. The answers to these questions could be obtained
owing to the use of the simplest QCD concepts of the
proton structure and the results obtained by calculating
the matrix elements of the proton current in the case of
non-spin-flip and spin-flip transitions for protons in the
diagonal spin basis (DSB), where the little Lorentz group
common to the initial and final proton states is realized.
In DSB, the form factors GE and GM are determined by
the matrix elements Jδ,δ

p , and J−δ,δ
p of the proton current

in the cases of non-spin-flip and spin-flip transitions for
protons. In an arbitrary reference frame, the relations
between these matrix elements and the form factors are
Jδ,δ
p ∼ GE and J−δ,δ

p ∼ √
τ GM where τ = Q2/4m2,

with m being the proton mass. In considering the prob-
lem in question at the quark level, use is made of the
model where the proton consists of three pointlike quarks
having identical masses and where the respective matrix
element of the proton current is the product of three
quark-current amplitudes having the form Jδ,δ

q ∼ 1 and

J−δ,δ
q ∼ √

τ . It is shown that the aforementioned dipole
dependence arises if the proton spin-flip is due to spin-flip
for only one of the three quarks. As to violations of this
dependence, they are caused by the contributions to Jδ,δ

p

from spin-flip transitions for two quarks or by the con-
tribution to J−δ,δ

p from spin-flip transitions for all three
quarks constituting the proton.
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Appendix A: Calculation of QED matrix elements in
the DSB

Introduction

In DSB the little Wigner group [11] common for the
initial and final states, is being realized [12, 13]. This
brings the spin operators of in- and out-particles to coin-
cidence and makes it possible to separate the interactions
with and without change in the spin states of the particles
involved in the reaction in the covariant form and, thus,
to trace the dynamics of the spin interaction. The spin
states of massless particles in the DSB coincides up to a
sign with the helicity basis [14, 15]; in this case, the DSB
formalism is equivalent to the CALKUL group method
[16]. In contrast to methods of CALKUL-group etc, the
developed approach is valid both for massive fermions
and for massless ones. There occur no problems with
accounting for spin-flip amplitudes in it. No auxiliary
vectors are to be introduced in DSB. Just 4-momenta
of particles participating in reaction are required in it
to construct the mathematical apparatus for amplitude
calculation.
In the DSB, Wigner rotations, which are purely kine-

matical in nature, are separated from the amplitudes.
This leads to maximal simplification of the mathemat-
ical structure of the matrix elements in the DSB, and
the resulting expressions give the truest reflection of the
physical essential of spin phenomena.
In the used by us Bogush-Fedorov covariant approach

[13] the calculation of matrix elements of the form (10)
reduces to evaluating the trace:

M±δ,δ = Tr(P±δ,δ
21 Q) , P±δ,δ

21 = uδ(q1) u
±δ(q2) . (A1)

To construction of the operators P±δ,δ
21 we need to know

• the projection operators of the particle states:
τδ1 = uδ(q1)u

δ(q1) and τδ2 = uδ(q2)u
δ(q2);

• the operator T21 (and its inverse operator T12,
T12 = T−1

21 , T21T12 = 1) for the transition from the
initial to the final state without spin-flip: uδ(q2) =
T21u

δ(q1), u
δ(q1) = T12u

δ(q2), u
δ(q2) = uδ(q1)T12;

• the raising and lowering spin operators in the case
of transitions with spin flip. They given by Eq.(8).

1. The projection operators of particles with spin
1/2 in the DSB

Let us consider the projection operators of particles
with spin 1/2, τδi = uδ(qi) u

δ(qi) [20]:

τδi = 1/2(q̂i +m)(1 − δγ5ŝi) , (A2)

where qi and si are 4-momenta and spin 4-vectors with
q2i = m2 and s2i = −1, qisi = 0, i = (1, 2). In the DSB
(5) the operators τδi (A2) have the form [14, 15]:

τδ1 = 1/2 [m+ ξ+b̂0 − ξ−b̂3 + (A3)

+ δγ5 (ξ−b̂0 − ξ+b̂3 −mb̂3b̂0)] ,

τδ2 = 1/2 [m+ ξ+b̂0 + ξ−b̂3 − (A4)

− δγ5(ξ−b̂0 + ξ+b̂3 +mb̂3b̂0)] .

Here 4-vectors b0, b3 and q+, q− are defined by Eq. (9),

ξ± =
√

±q2±/2. Owing to (8), the spin parts of the pro-

jection operators for particles 1 and 2 in the DSB can be
made identical, and so we have [15]:

τδi = −1/4 (q̂i +m) b̂δ b̂∗δ , (A5)

where b∗δ = b−δ = b1−iδb2 and bδb
∗
δ = −2. Here 4-vectors

b1, b2 are defined by Eq. (9).
In the massless case the projection operators τδ1 and

τδ2 (A3) and (A4) take the form [14, 15]:

τδ1 = q̂1 (1− δγ5)/2 , τδ2 = q̂2 (1 + δγ5)/2 . (A6)

It is easy to show that the operators τδ1 and τδ2 (A6)
satisfy the relations:

γ5τδ1 = δ τδ1 , γ5τδ2 = −δ τδ2 , (A7)

τδ1 γ5 = −δ τδ1 , τδ2 γ5 = δ τδ2 , (A8)

which imply that in the massless case the initial state is
a helicity state, and the final state has negative helicity.

2. The operator T21 for the transition from the
initial to the final state without spin-flip

The bispinors of the initial and final states of the par-
ticles, uδ(q1) and uδ(q2), can be related to each other by
using the transition operators T21 and T12 = T−1

21 [14, 15]:

uδ(q2) = T21 uδ(q1) , u
δ(q2) = uδ(q1) T12 , (A9)

which in the DSB have the form [14, 15]:

T21 =
1 + v̂2v̂1

√

2(v1v2 + 1)
, T12 =

1 + v̂1v̂2
√

2(v1v2 + 1)
, (A10)

where vi = qi/m. Note that the Dirac equation can be
used to reduce the transition operators T21 and T12 (A10)
to the same form [14, 15]:

T21 = T12 = b̂0 . (A11)

3. The construction of operators
P±δ,δ
21

= uδ(q1)u
±δ(q2)

In the papers [14, 15] we have constructed the oper-

ators P±δ,δ
21 = uδ(q1)u

±δ(q2) (11) used to calculate the
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DSB amplitudes in the case of transitions without and
with spin-flip. They can be easy evaluated by the next
way:

P δ,δ
21 = uδ(q1)u

δ(q2) = uδ(q1)u
δ(q1)T12 = τδ1 T12,

P−δ,δ
21 = uδ(q1)u

−δ(q2) = σ+δu−δ(q1)u
−δ(q2) =

= σ+δP −δ,−δ
21 . (A12)

The operators P±δ,δ
21 (A12) determine the structure of the

spin dependence of the matrix elements (10) in the case
of transitions without spin-flip (M δ,δ) and with spin-flip
(M−δ,δ). Their explicit form in the DSB can easily be
obtained by using Eqs. (8), (A3), (A4), and (A11):

P δ,δ
31 = [ ξ+ +m b̂0 − ξ−b̂3 b̂0 + (A13)

+ δγ5(ξ− −m b̂3 − ξ+b̂3 b̂0)]/2,

P−δ,δ
31 = −δ ( ξ− +m b̂3 + ξ+ δ γ5 ) b̂δ/2 . (A14)

Equations (A13) and (A14) can be used to calculate the
matrix elements, both with and without spin-flip, for ar-
bitrary Q. In particular, if the interaction operator re-
duces to the form

Q = Â1 + γ5 Â2 , (A15)

where A1 and A2 are any 4-vectors, then for the matrix
elements (10) we will have:

M δ,δ = 2m (A1b0 + δ A2b3 ) , (A16)

M−δ,δ = 2 [−δξ− (A1bδ) + ξ+ (A2bδ)] . (A17)

Equations (A13) and (A14) can be written more com-
pactly by using the operators (A5) and (A11), and also
the expressions [14, 15]:

b̂3b̂0b̂δ = −δγ5b̂δ, γ
5b̂δ b̂0 = δb̂3b̂δ, γ

5b̂δ b̂3 = δb̂0b̂δ . (A18)

As a result, for the operators P±δ,δ
21 we have [14, 15]:

P δ,δ
21 = (q̂1 +m) b̂δ b̂0 b̂∗δ/4 , (A19)

P−δ,δ
21 = δ (q̂1 +m) b̂δ b̂3/2 . (A20)

In the massless case (q21 = q22 = 0) the operators P±δ,δ
21

in (A13) and (A14) take the form [14, 15]:

P δ,δ
21 = ξ(1 + δγ5)(1 + b̂0b̂3)/2 , (A21)

P−δ,δ
31 = −δξ(1 + δγ5) b̂δ/2 , (A22)

where ξ = ξ+ = ξ− =
√

q1q2/2.

Appendix B: Standard method for calculation
ep → ep cross sections

The cross section (1) can be represented as the sum of
the cross sections without spin-flip (σδ,δ) and with spin-
flip (−σδ,δ) of the initial proton:

dσ

dΩ
= κ

(

G2
E +

τ

ε
G2

M

)

= κ (σδ,δ + σ−δ,δ), (B1)

σδ,δ = G2
E , σ−δ,δ =

τ

ε
G2

M . (B2)

where κ is the factor in front of the parentheses in Eq.
(1). At the same time the axes of the spin projections
c1 and c2 should be coincide with the direction of final-
proton motion: c1 = c2 = n2 and the spin 4-vectors s1
and s2 for initial and final protons must have the form

s1 = (0,n2), s2 = (|v2|, v20 n2) . (B3)

The terms σδ,δ and σ−δ,δ in Eq. (B1), (B2) are the cross
sections without and with the spin-flip for the case when
the initial and final protons are fully polarized in the
direction of the motion of the final proton. For the case
when ~c1 = ~n2 and ~c2 = ~n2 we have σδ,δ and for the case
when ~c1 = ~n2 and ~c2 = −~n2 we have σ−δ,δ.
Let us remind that the general form for spin 4-vectors

s1 and s2 for protons with 4-momentum q1, q2 is:

si = (s0i, si), s0i = vi ci, si = ci +
(civi)vi

1 + v0i
, (B4)

where vi = (v0i,vi) = qi/m, i = 1, 2.
To prove the relation (B1), (B2) there are two addi-

tional ways:

• Using the standard method calculation for QED
processes cross sections [20].

• With help of book [21] by F. Halzen and A. Martin
”Quarks and leptons. An Introductory Course in
Modern Particle Physics”, EXERCISE 8.7, Page
178, 1984 (in English); Page 214, 1987 (in Russian).

1. Standard method for calculation ep → ep cross
sections

Evaluation of the cross section for the process ep → ep
reduces to the calculation of the square modulus of the
matrix element (15) for this process:

σ ∼ |Mep→ep|2 = |u(p2)γµu(p1) · u(q2)Γµ(q
2)u(q1)|2 .

In the standard method [20] this calculation of σ with
taken into account the polarization of initial in final pro-
tons reduces to determination of product of lepton (Lµν)
and proton (Wµν) tensors

σs1,s2 ∼ LµνWµν , (B5)

Lµν = 2 · Tr(τe2γµτe1 γ
ν), (B6)

Wµν = Tr(τp2 Γµτ
p
1 Γν) , (B7)

with

τe1 =
1

2
(p̂1 +me), τ

e
2 =

1

2
(p̂2 +me) ,

τp1 =
1

2
(q̂1 +m)(1 − δ1γ5ŝ1) ,

τp2 =
1

2
(q̂2 +m)(1 − δ2γ5ŝ2) .
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Lepton tensor Lµν (B6) have the form

Lµν = 2 (pµ1p
ν
2 + pµ2p

ν
1) + q2gµν . (B8)

Tensor Lµν in terms p+ = p2 + p1; p− = p2 − p1 have a
form

Lµν
2 ≡ Lµν = pµ+p

ν
+ − pµ−p

ν
− + q2gµν . (B9)

In this equation the term pµ−p
ν
− can be safely omitted as

far as it do not contribute to the cross section of process
(B5). It is the consequence of the gauge invariance of
QED amplitudes. As a result for the lepton tensor we
obtain a new, compact expression

Lµν
c ≡ Lµν = pµ+p

ν
+ + q2gµν . (B10)

Using the representation (24) for Γµ(q
2) and the defini-

tion of Dirac formfactor in terms of the Sachs ones

F1 =
GE + τGM

1 + τ
=

4m2

q2+
(GE + τGM ) , (B11)

we obtain for tensor Wµν

Wµν ≡ W δ1δ2
µν =

1 + δ1δ2
2

W δ,δ
µν +

1− δ1δ2
2

W−δ,δ
µν , (B12)

with

W δ,δ
µν =

4m2G2
E

q2+
(q+)µ(q+)ν , (B13)

W−δ,δ
µν =

4m2τG2
M

q2+
{(q+)µ(q+)ν − q2+gµν + (B14)

+(q−)µ(q−)ν q
2
+/q

2
− − 4iδεµνρσq

ρ
−q

σ
+

√

q2+/
√

−q2−} ,

where we as well can omit the term (q−)µ(q−)ν .
Note that for the case of unpolarized leptons (initial

and the scattered) the asymmetry part of the tensor
W−δ,δ

µν (or the imaginary part of it) in (B14) as well do
not contribute to the cross section of process ep → ep.
So for tensors W δ,δ

µν and W−δ,δ
µν , which corresponds to the

cases with spin-flip an without spin-flip, for the unpolar-
ized leptons we have

W δ,δ
µν =

4m2G2
E

q2+
(q+)µ(q+)ν , (B15)

W−δ,δ
µν =

4m2τG2
M

q2+
{(q+)µ(q+)ν − q2+gµν} . (B16)

Forming the product of leptonic tensor (B10) and the
proton one (B12) with (B15), (B16)) we obtain:

σs1,s2 =
(1 + δ1δ2)

2
W δ,δ

ep→ep +
(1− δ1δ2)

2
W−δ,δ

ep→ep, (B17)

W δ,δ
ep→ep =

4m2G2
E

q2+
[(p+q+)

2 + q2+q
2
−] , (B18)

W−δ,δ
ep→ep =

4m2τG2
M

q2+
[(p+q+)

2 − q2+(q
2
− + 4m2

e)] . (B19)

With the help of the matrix elements of the proton
current (18), (19) calculation probability of the process
ep → ep can be reduced to calculation of the trivial trace:

| T |2= 4m2

q4
1

8

∑

δ

Tr(G2
E(p̂2 +me)b̂0(p̂1 +me)b̂0 +

+ τ G2
M (p̂2 +me)b̂δ(p̂1 +me)b̂

∗
δ) .

The expression for |T |2 leads to the cross section, which
coincides with result in [20]:

dσ =
α2do

4w2

1

1 + τ
(G2

E YI + τ G2
M YII )

1

q4
, (B20)

YI = (p+q+)
2 + q2+q

2
−, YII = (p+q+)

2 − q2+(q
2
− + 4m2

e) .

Thus, the differential cross section for the ep → ep
process naturally splits into the sum of two terms con-
taining only the squares of the Sachs form factors and
corresponding to the contribution of transition without
(∼ G2

E) and with (∼ G2
M ) proton spin-flip.

In the paper [9] based on the use of the expression
(B17) a new method of measuring of the Sachs form fac-
tors was suggested. It was shown that they can be deter-
mined separately and independently by direct measure-
ments of the cross sections without and with spin-flip
of the initial proton, which should be at rest and fully
polarized in the direction of the motion of the scattered
proton.

Using the matrix elements of the proton current in
DSB (18), (19) for the proton tensor W δ1,δ2

µν one can con-
struct an another equivalent and compact expression:

W δ1,δ2
µν = 4m2

[

(1 + δ1δ2)

2
G2

E(b0)µ(b0)ν+

+
(1− δ1δ2)

2
τp G

2
M (bδ)µ(b

∗
δ)ν

]

. (B21)

For the leptonic tensor in the case of electrons can be
written similar expression:

L
δe1δe2
µν = 4m2

e

[

(1 + δe1δe2)

2
(a0)µ(a0)ν+

+
(1− δe1δe2)

2
τe (aδe)µ(a

∗
δe
)ν

]

, (B22)

with orthonormal basis of 4-vectors aA (A = 0, 1, 2, 3),
constructed from 4-momenta of the electrons:

(a1)µ = εµνκσa
ν
0a

κ
3a

σ
2 , (a2)µ = εµνκσp

ν
1p

κ
2 q

σ
1 /ρ,

a3 = p−/
√

−p2−, a0 = p+/
√

p2+ . (B23)

Here, p− = p2 − p1, p+ = p2 + p1, and ρ is determined
from the normalization conditions a21 = a22 = a23 = −a20 =
−1, aδe = a1 + iδea2, a

∗
δe

= a1 − iδea2.
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Appendix C: An alternative method of calculation
of the spin-flip and non-flip proton current matrix

elements

To prove the correctness of the results obtained in the
DSB for the proton current matrix elements (18), (19) we
propose to consider here Exercise 8.7 at page 178 from
book of F. Halzen and A. Martin [21] (Fig. 8.3 also ex-
tracted from this book and show at Figure 1). In this ex-
ercise one suggests to consider the matrix elements of the
proton current in the Breit reference frame and show that
the proton transition with helicity-flip (without helicity-
flip) are determined by only the Sachs electric formfactor
GE (magnetic form factor GM ).

FIG. 1: Exercise 8.7 at page 178 from book of F.
Halzen and A. Martin [21].
From this picture, we see that in the Breit-system a

transition with (without) a change in the sign of helicity
is the transition without (with) spin-flip of the proton:

J−λ,λ
µ = Jδ,δ

µ = 2 eM GE (b0)µ , (C1)

Jλ,λ
µ = J−δ,δ

µ = −2e δ|q|GM (bδ)µ , (C2)

|q| =
√

Q2,

where

b0 = (1, 0, 0, 0), b1 = (0, 1, 0, 0), b2 = (0, 0, 1, 0), (C3)

b3 = (0, 0, 0, 1), bδ = b1 + iδb2, δ = ±1 .

Below we will dropped the factor e in matrix elements
and denote by the letter m of the proton mass:

Jδ,δ
µ = 2mGE (b0)µ , J

−δ,δ
µ = −2mδ

√
τ GM (bδ)µ. (C4)

In the Breit system where q1 = (q0,−q), q2 = (q0, q) and
the spin states of the initial and final protons are helicity,
so they spin four-vectors s1 s2 have the form:

s1 = (−|v|, v0n2), s2 = (|v|, v0n2) ,n2 = q2/|q2| . (C5)

Let us make transition from Breit system to an arbi-
trary reference frame. For this purpose we need to write
the four basic vectors bA (C3) in the covariant form. We
will construct 4-vectors bA through the 4-momenta of
participating in the reaction particles. The unit 4-vectors
b0 and b3 can be written as the normalized per unit the
sum and difference between the momenta of final and
initial protons:

b0 =
q+
√

q2+

, b3 =
q−

√

−q2−

, (C6)

(b1)µ = εµνκσb
ν
0b

κ
3b

σ
2 , (b2)µ = εµνκσb

ν
0b

κ
3p

σ
1/ρ , (C7)

q+ = q1 + q2 = (2q0, 0, 0, 0),⇒ b0 = (1, 0, 0, 0),

q− = q2 − q1 = (0, 0, 0, 2q),⇒ b3 = (0, 0, 0, 1),

The matrix elements of the proton current (C4) by using
(C6), (C7) coincide with results (18), (19) in DSB and
are valid in arbitrary reference frame.
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