$e^{+} e^{-} \rightarrow \sqrt{N}$ at BESII

Marco Maggiora*
on behalf of the BESIII Collaboration

* Department of Physics, University of Turin and INFN, Turin

Electromagnetic structure of hadrons: annihilation and scattering processes

GDR 3034 - Chromodynamique Quantique

 et Physique des HadronsGDR-PH-QCD, Meeting Groupe 2
S UPN Orsay, October $3^{\text {rd }}-5^{\text {th }}, 2012$

BEPCII: $e^{+} e^{-}$double ring collider

Design Features

- Beam energy: 1.0-2.3 GeV
- Crossing angle: $\mathbf{2 2}$ mrad (DAФNE 50 mrad$)$
- Luminosity: $10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

Optimum energy: 1.89 GeV

- Energy spread: 5.16×10^{-4}
- Number of bunches: 93
- Bunch length: $\mathbf{1 . 5} \mathbf{c m}$
- Total current: 0.91 A

The BESIII detector

A significant improvement with respect to BESII

The BESII and BESIII detectors

BESII @ BEPC

BESIII @ BEPCII

Device	Performance
MDC	$\sigma_{p} / p=1.7 \% \sqrt{1+p^{2}}, d E / d x=8 \%$
TOF	$180 p s(b h a b h a)$
EMC	$\sigma_{E} / E<22 \% / \sqrt{E}$
MUC	3 layers
Magnet	0.4 T Solenoidal

Device	Performance
MDC	$\sigma_{p} / p=0.5 \%, d E / d x<6 \%$
TOF	80 ps barrel $($ bhabha), 100 ps endcap
EMC	$\sigma_{E} / E<2.5 \% / \sqrt{E}$
MUC	9 barrel +8 endcap layers
Magnet	1 T Solenoidal

- $R_{\text {had }}$ and precision test of Standard Model
- Light hadron spectroscopy ($\phi f_{0}(980), \phi \pi^{0}, \ldots$)
- Charm and charmonium physics
- τ physics
- Precision measurements of CKM matrix elements
- Search for new physics / new particles

Physics Channels	Energy (GeV)	Luminosity $\left(10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$	Events/year
J / Ψ	3.10	0.6	1.0×10^{10}
τ	3.67	1.0	1.2×10^{7}
$\Psi(2 S)$	3.69	1.0	3.0×10^{9}
D^{*}	3.77	1.0	2.5×10^{7}
D_{s}	4.03	0.6	1.0×10^{6}
D_{s}	4.14	0.6	2.0×10^{6}

BEPCII / BESIII milestones

- Mar. 2008:
- Apr. 30, 2008:
- July 18, 2008:
- Apr. 14, 2009:
- July 28, 2009:
- 2010-2011:
- May, 2011:
- 2012:

Collisions at $500 \mathrm{~mA} \times 500 \mathrm{~mA}$,
Luminosity: $1 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
Move BESIII to IP
First $\boldsymbol{e}^{+} \boldsymbol{e}^{-}$collision event in BESIII
$\sim 106 \mathrm{M} \Psi(2 S)$ events ($150 \mathrm{pb}^{-1}$) $\sim 4 \times$ CLEO-c
($\sim 42 \mathrm{pb}^{-1}$ at 3.65 GeV)
$\sim 225 \mathrm{M} \mathrm{J} / \Psi$ events ($65 \mathrm{pb}^{-1}$) $\sim 4 \times$ BESII
$\sim 2.9 \mathrm{fb}^{-1}$ at $\psi(3770) \sim 11 \times$ CLEO-c
($\sim 70 \mathrm{pb}^{-1}$ scanning in the $\psi(3770)$ energy region)
$\sim 0.5 \mathrm{fb}^{-1}$ at 4.01 GeV (Ds and XYZ spectroscopy)
~ 0.4 B $\Psi(2 S)$ events $\sim 16 \times$ CLEO-c
$\sim 1 \mathrm{~B} J / \Psi$ events $\sim 18 \times$ BESII

The ratio $R=\mu_{p} \frac{\mathcal{G}_{E}}{\boldsymbol{G}_{M}^{p}}$

Nucleon form factors and cross sections

Nucleon current operator (Dirac \& Pauli)

$$
\overline{\Gamma^{\mu}(q)}=\gamma^{\mu} F_{1}\left(q^{2}\right)+\frac{i}{2 M_{\mathcal{B}}} \sigma^{\mu \nu} q_{\nu} F_{2}\left(q^{2}\right)
$$

Electric and Magnetic Form Factors

$$
\begin{aligned}
& G_{E}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+\tau F_{2}\left(q^{2}\right) \\
& G_{M}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+F_{2}\left(q^{2}\right)
\end{aligned} \quad \tau=\frac{q^{2}}{4 M_{B}^{2}}
$$

$$
\beta=\sqrt{1-\frac{1}{\tau}}
$$

$$
\begin{aligned}
& \text { Pointlike fermions } \\
& \text { e.g. } e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}
\end{aligned} \frac{d \sigma}{d \Omega}=\frac{\alpha^{2} \beta_{\mu} C}{4 q^{2}}\left(2-\beta_{\mu}^{2} \sin ^{2} \theta\right) \Longrightarrow\left|G_{E}\right|=\left|G_{M}\right| \equiv 1
$$

Analyticity of baryon form factors

$\underline{q^{2} \text {-complex plane }}$

Crossing: tot. helicity $=\left\{\begin{array}{l}1 \Rightarrow G_{E} \\ 0 \Rightarrow G_{M}\end{array} \quad \quad G_{E}\left(4 M_{\mathcal{B}}^{2}\right)=G_{M}\left(4 M_{\mathcal{B}}^{2}\right)\right.$

QCD counting rule constrains the asymptotic behaviour

Matveev, Muradyan, Tevkheldize, Brodsky, Farrar

Counting rule: $\boldsymbol{q}^{2} \rightarrow-\infty$
 $i=1$ Dirac, $i=2$ Pauli FF

$F_{i}\left(q^{2}\right) \propto\left(-q^{2}\right)^{-(i+1)} \Rightarrow G_{E, M} \propto\left(-q^{2}\right)^{-2}$

G_{E}^{p} and G_{M}^{p} with Rosenbluth separation

\triangle RMP35,335(63)

- PLB31,40(70)
- PRD4,45(71)
\times PLB35,87(71)
\oplus NPB58,429(73)
* PRD8,753(73)

区 NPB93,461(75)
\square NPA333,381(80)
\diamond PRD50,5491(94)
\star PRD49,5671(94)

+ PRC70,015206(04)
- PRL94,142301(05)
\triangle RMP35,335(63)
PR142,922(66)
\square PRL20,292(68)
- PLB31,40(70)
- PRD4,45(71)
\times PLB35,87(71)
* PRD8,753(73)
$\stackrel{\text { NPB58,429(73) }}{ }$ - NPB93,461(75)
* PRD48, 29(93)
\diamond PRD50,5491(94)
* PRD49,5671(94)
+ PRC70,015206(04)
- PRL94,142301(05)

Polarization data do not agree with old Rosenbluth data (\diamond)

New Rosenbluth separation data from JLab still do not agree with polarization data
G_{E}^{n} and G_{M}^{n} with different techniques

Elastic e-d cross section

- Polarization observables in electron scattering with ${ }^{2} \mathrm{H}$ and ${ }^{3} \mathrm{He}$ targets

- Quasi-elastic e-d / elastic e-p cross sections
- Polarization observables in electron scattering on a polarized ${ }^{3} \overrightarrow{\mathrm{He}}$ target

○ $\bullet: \boldsymbol{q}^{2}=-5.00 \mathrm{GeV}^{2}$
$\Delta \Delta: q^{2}=-3.25 \mathrm{GeV}^{2}$
$\square: q^{2}=-1.75 \mathrm{GeV}^{2}$

$$
\begin{array}{cl}
\ldots=- & \text { Virtual Compton Scattering } \\
& \text { PRC62,025501(00) } \\
\ldots-\ldots & \text { Two-photon with GPD } \\
& \text { PRD72,013008(05) } \\
-\quad \text { Structure functions RC } \\
\text { (Egle) PRC75,015207(07) } \\
-\quad-\quad \text { Polarization data }
\end{array}
$$

Rosenbluth \rightarrow Polarization

Two-photon exchange (2γ-GPD)

- Two-photon exchange: contributions from intermediate far off-shell states
- Two hard photons
- Structure of nucleon: partonic "handbag" and GPD's

Structure function

 radiative corrections (SF-RC)- Hard bremsstrahlung from electron linesNo co-linearity approximation
- Two-photon exchange contribution $\sim 1 \%$

2γ-GPD and SF-RC change the slope in Rosenbluth plots

> 2γ-GPD and SF-RC have negligible contribution to the polarized cross section ratio

The $1 \gamma-2 \gamma$ interference terms have opposite signs in $\boldsymbol{e}^{+} \boldsymbol{p}$ and $\boldsymbol{e}^{-} \boldsymbol{p}$ elastic scattering cross sections $\sigma_{ \pm}$

A large (some \%) 2γ contribution produces deviations from unity as a function of ϵ for the ratio σ_{+} / σ_{-}

No evidence of two-photon effects

Time-like magnetic proton form factor

Data obtained assuming $\left|G_{M}^{p}\right|=\left|G_{E}^{p}\right| \equiv\left|G_{\text {eff }}^{p}\right|$ (true only at threshold)

$$
\left|G_{\mathrm{eff}}^{p}\right|^{2}=\frac{\sigma_{p \bar{p}}\left(q^{2}\right)}{\frac{16 \pi \alpha^{2} C_{e}}{3} \frac{\sqrt{1-1 / \tau}}{4 q^{2}}\left(1+\frac{1}{2 \tau}\right)}
$$

Asymptotic behavior

$\cos \theta_{p}$ distributions form threshold up to 3 GeV [intervals in $\left.E_{C M} \equiv q(\mathrm{GeV})\right]$

Events/0.2 vs. $\cos \theta_{p}$

$$
\frac{d \sigma}{d \cos \theta_{p}}=A\left[H_{E}\left(\cos \theta_{p}, q^{2}\right)\left|\frac{G_{E}^{p}\left(q^{2}\right)}{G_{M}^{p}\left(q^{2}\right)}\right|^{2}+H_{M}\left(\cos \theta_{p}, q^{2}\right)\right]
$$

H_{E} and H_{M} from MC

Histograms show contributions from

- G_{E}

At higher $q,\left|G_{E}^{p}\right| \rightarrow\left|G_{M}^{p}\right|$

Time-like $\left|G_{E}^{p} / G_{M}^{p}\right|$ measurements

$$
\frac{d \sigma}{d \cos \theta}=\frac{\pi \alpha^{2} \beta C}{2 q^{2}}\left|G_{M}^{p}\right|^{2}\left[\left(1+\cos ^{2} \theta\right)+\frac{4 M_{p}^{2}}{q^{2} \mu_{p}^{2}} \sin ^{2} \theta|R|^{2}\right]
$$

$$
R\left(q^{2}\right)=\mu_{p} \frac{G_{E}^{p}\left(q^{2}\right)}{G_{M}^{p}\left(q^{2}\right)}
$$

$\gamma \gamma$ exchange interferes with the Born term

Asymmetry in angular distributions
[E. Tomasi-Gustafsson, M.P. Rekalo, PLB504,291(01)]

$$
\mathcal{A}\left(\theta, q^{2}\right)=\frac{\frac{d \sigma}{d \Omega}\left(\theta, q^{2}\right)-\frac{d \sigma}{d \Omega}\left(\pi-\theta, q^{2}\right)}{\frac{d \sigma}{d \Omega}\left(\theta, q^{2}\right)+\frac{d \sigma}{d \Omega}\left(\pi-\theta, q^{2}\right)}=\frac{\frac{d \sigma}{d \Omega}\left(\theta, q^{2}\right)-\frac{d \sigma}{d \Omega}\left(\pi-\theta, q^{2}\right)}{2 \frac{d \sigma^{\mathrm{Born}}}{d \Omega}\left(\theta, q^{2}\right)}
$$

$\left|G_{E}^{p}\left(q^{2}\right)\right|$ and $\mid G_{M}^{p}\left(q^{2}\right)$ from $\sigma_{p \bar{p}}$ and DR

- Usually what is extracted from the cross section $\sigma\left(e^{+} e^{-} \rightarrow p \bar{p}\right)$ is the effective time-like form factor $\left|G_{\text {eff }}^{p}\right|$ obtained assuming $\left|G_{E}^{p}\right|=\left|G_{M}^{p}\right|$ i.e. $|R|=\mu_{p}$

Using DR's to parameterize R and the BABAR data on $\sigma\left(e^{+} e^{-} \leftrightarrow p \bar{p}\right)$, $\left|G_{E}^{p}\right|$ and $\left|G_{M}^{p}\right|$ may be disentangled

BESIII can measure separately $\left|G_{E}^{p}\right|$ and $\left|G_{M}^{p}\right|$

Cfr. talk by Simone Pacetti

$\left|G_{E}^{p}\left(q^{2}\right)\right|$ and $\left|G_{M}^{p}\left(q^{2}\right)\right|$ from $\sigma_{p \bar{p}}$ and $D R$

$$
\left|G_{M}\left(q^{2}\right)\right|^{2}=\frac{\sigma_{p \bar{p}}\left(q^{2}\right)}{\frac{4 \pi \alpha^{2} \beta C}{3 s}}\left(1+\frac{\left|R\left(q^{2}\right)\right|}{2 \mu_{p} \tau}\right)^{-1}
$$

- Usually what is extracted from the cross section $\sigma\left(e^{+} e^{-} \rightarrow p \bar{p}\right)$ is the effective time-like form factor $\left|G_{\text {eff }}^{p}\right|$ obtained assuming $\left|G_{E}^{p}\right|=\left|G_{M}^{p}\right|$ i.e. $|R|=\mu_{p}$

Using DR's to parameterize R and the BABAR data on $\sigma\left(e^{+} e^{-} \leftrightarrow p \bar{p}\right)$, $\left|G_{E}^{p}\right|$ and $\left|G_{M}^{p}\right|$ may be disentangled

- BESIII can measure separately $\left|G_{E}^{p}\right|$ and $\left|G_{M}^{p}\right|$

Cfr. talk by Simone Pacetti

Future data on $\boldsymbol{R}=\mu_{p} \boldsymbol{G}_{E}^{p} / \mathcal{G}_{M}^{p}$

Space-ike region

Time-like region

ISR

ISR: Physics Motivations

- Existing results, obtained by BABAR (ISR), show interesting and unexpected behaviors, mainly at thresholds, for

$$
\mathbf{e}^{+} \boldsymbol{e}^{-} \rightarrow p \bar{p} \quad \text { and } \quad \mathbf{e}^{+} \boldsymbol{e}^{-} \rightarrow \Lambda \bar{\Lambda}
$$

- Only one measurement (FENICE with energy scan) for

$$
e^{+} e^{-} \rightarrow n \bar{n}
$$

There are physical limits in reaching the threshold of many of these channels via energy scan (stable hadrons produced at rest can not be detected)

> The Initial State Radiation technique provides a unique tool to access threshold regions working at higher resonances

Initial State Radiation

$\frac{d^{2} \sigma}{d E_{\gamma} d \theta_{\gamma}}=W\left(E_{\gamma}, \theta_{\gamma}\right) \cdot \sigma_{e^{+} e^{-} \rightarrow x_{\text {had }}}(s)$
$W\left(E_{\gamma}, \theta_{\gamma}\right)=\frac{\alpha}{\pi x}\left(\frac{2-2 x+x^{2}}{\sin ^{2} \theta_{\gamma}}\right)$

- $s=q^{2}, \boldsymbol{q} \ldots \ldots . \boldsymbol{X}_{\text {had }}$ momentum
- $E_{\gamma}, \theta_{\gamma} \ldots \mathrm{CM} \gamma$ energy, scatt. ang.
- $E_{\mathrm{CM}} \ldots \ldots \ldots . . . \mathrm{CM} \boldsymbol{e}^{+} \boldsymbol{e}^{-}$energy
- $x=E_{\gamma} / 2 E_{\mathrm{cm}}$

Advantages

- All energies $\left(q^{2}\right)$ at the same time
\Downarrow
Better control on systematics
(e.g. greatly reduced point to point)
- Detected ISR \Rightarrow full $X_{\text {had }}$ angular coverage
- CM boost $\Rightarrow\left\{\begin{array}{l}\text { at threshold } \epsilon \neq 0 \\ \text { energy resolution } \sim 1 \mathrm{MeV}\end{array}\right.$

ISR: BESIII vs BABAR

ISR Luminosity

$$
\frac{d L}{d q}=\frac{2 q}{E_{c m}^{2}} L_{e e} \int_{\cos \theta_{\gamma}^{\min }}^{\cos \theta_{\gamma}^{\max }} W\left(E_{\gamma}, \theta_{\gamma}\right) d \cos \theta_{\gamma}
$$

$$
\begin{aligned}
& L_{e e} \text { total luminosity } \\
& \theta_{\gamma}^{\min , \max } \ldots . \text { geom. accept. }
\end{aligned}
$$

ISR: BESIII vs BABAR

$$
\left.\frac{d^{2} L}{d \cos \theta_{\gamma} d \sqrt{s}}=\frac{2 \sqrt{s} L_{e^{+} e^{-}}}{E_{c . m .}^{2}} \frac{\alpha}{\pi x}\left(\frac{2-2 x+x^{2}}{\sin ^{2} \theta_{\gamma}}-\frac{x^{2}}{2}\right) \right\rvert\, \begin{aligned}
& L_{e^{+} e^{-}}=\text {luminosity } \\
& x=\frac{2 E_{\gamma}}{E_{c . m .}}=1-\frac{s}{E_{c . m}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d^{2} \sigma_{\text {ISR }}}{d E_{\gamma} d \theta_{\gamma}} & =\frac{\alpha^{3} E_{\gamma}}{3 E_{c . m .}^{2} s}\left(\left|G_{M}^{p}(s)\right|^{2}+\frac{\left|G_{E}^{p}(s)\right|^{2}}{2 \tau}\right) \mathcal{W}\left(E_{\gamma}, \theta_{\gamma}\right) \\
\frac{d^{2} \sigma_{\mathrm{FSR}}}{d E_{\gamma} d \theta_{\gamma}} & =\frac{\alpha^{3} E_{\gamma}}{3 E_{c . m .}^{4}} \mathcal{F}\left[E_{\gamma}, \theta_{\gamma}, G_{E}^{p}\left(E_{c . m .}^{2}\right), G_{M}^{p}\left(E_{c . m .}^{2}\right)\right]
\end{aligned}
$$

No ISR-FSR interference after $d \Phi(p \bar{p})$ integration

$$
R_{\mathrm{ISR} / \mathrm{FSR}}=\frac{d \sigma_{\mathrm{ISR}} / d E_{\gamma}}{d \sigma_{\mathrm{ISR}} / d E_{\gamma}+d \sigma_{\mathrm{FSR}} / d E_{\gamma}}\left[20^{\circ} \leq \theta_{\gamma} \leq 160^{\circ}\right]
$$

For large values of x or at small angle θ_{γ} of photon emission the final state radiation is strongly suppressed

ISR angular distribution and zero-degree tagging

ISR angular distribution peaked at low angles

-
$\beta_{e}=\sqrt{1-4 m_{e}^{2} / E_{c . m}^{2}}$.

With a typical $\theta_{\gamma}^{\min }=20^{\circ}$ $\sim 80 \%$ of events is lost!

$\Delta N\left(\theta^{\max }\right) \propto \int_{0}^{\theta_{\gamma}^{\max }} d \theta_{\gamma} \frac{d N}{d \theta_{\gamma}}$

With $\theta^{\text {max }}=3$ mrad more statistics than at wide angle!

BESIII Zero-Degree Detector

O $J / \Psi, \Psi(2 S), \psi(3770)$ resonances decay with high BR's to final states with π^{0} and γ_{FS} (final state)

- At BESIII these decay channels represent severe backgrounds for typical ISR final states with $\gamma_{\text {IS }}$ detected at wide angle
- π^{0} and final γ angular distributions are isotropic
ISR angular distribution is peaked at small angles

A zero-degree radiative photon tagger will suppress most of these backgrounds

> A new zero-degree detector (ZDD), has been installed on summer 2011 at BESIII to tag ISR photons
> as well as to measure the luminosity

Pointlike Baryons?

The Coulomb Factor

$p \bar{p}$ Coulomb interaction as FSI
[Sommerfeld, Sakharov, Schwinger, Fadin, Khoze]

Distorted wave approximation

$$
c=\left|\Psi_{\text {coul }}(0)\right|^{2}
$$

S-wave:

D-wave: $C=1$

$$
\sigma\left(e^{+} e^{-} \rightarrow p \bar{p}\right)=\frac{4 \pi \alpha^{2} \beta_{p} C}{3 q^{2}}\left[\left|G_{M}\right|^{2}+\frac{2 M_{p}^{2}}{q^{2}}\left|G_{E}\right|^{2}\right] \quad C \underset{\beta \rightarrow 0}{\sim} \frac{\pi \alpha}{\beta}
$$

$$
\sigma\left(e^{+} e^{-} \rightarrow p \bar{p}\right)\left(4 M_{p}^{2}\right)=\frac{\pi^{2} \alpha^{3}}{2 M_{p}^{2}} \frac{\beta_{p}}{\beta_{p}}\left|G^{p}\left(4 M_{p}^{2}\right)\right|^{2}=0.85\left|G^{p}\left(4 M_{p}^{2}\right)\right|^{2} \mathrm{nb}
$$

$$
\left|G^{p}\left(4 M_{p}^{2}\right)\right| \equiv 1 \quad \text { as pointlike fermion pairs! }
$$

Using the ISR technique with only few $f b^{-1}$ of integrated luminosity BESIII can easily achieve the BABAR statistics

Sommerfeld Enhancement and Resummation Factors

Coulomb Factor \mathcal{C} for S-wave only:

- Partial wave FF: $\quad G_{S}=\frac{2 G_{M} \sqrt{q^{2} / 4 M^{2}}+G_{E}}{3} \quad G_{D}=\frac{G_{M} \sqrt{q^{2} / 4 M^{2}}-G_{E}}{3}$

Cross section:

$$
\sigma\left(q^{2}\right)=2 \pi \alpha^{2} \beta \frac{4 M^{2}}{\left(q^{2}\right)^{2}}\left[\mathcal{C}\left|G_{S}\left(q^{2}\right)\right|^{2}+2\left|G_{D}\left(q^{2}\right)\right|^{2}\right]
$$

$\mathcal{C}=\mathcal{E} \times \mathcal{R}$

- Enhancement factor:

$$
\mathcal{E}=\pi \alpha / \beta
$$

- Step at threshold:

$$
\sigma_{p \bar{p}}\left(4 M_{p}^{2}\right)=\frac{\pi^{2} \alpha^{3}}{2 M^{2}} \frac{\beta}{\nexists}\left|G_{S}^{p}\left(4 M_{p}^{2}\right)\right|^{2}=0.85\left|G_{S}^{p}\left(4 M_{p}^{2}\right)\right|^{2} \mathrm{nb}
$$

- Resummation factor:

$$
\mathcal{R}=1 /[1-\exp (-\pi \alpha / \beta)]
$$

$$
\text { Few MeV above threshold: } \quad \mathcal{C} \simeq 1 \Rightarrow \sigma_{p \bar{p}}\left(q^{2}\right) \propto \beta\left|G_{S}^{p}\left(q^{2}\right)\right|^{2}
$$

\square

BABAR: $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow p \bar{p}$

At the threshold

$$
\sigma_{p \bar{p}}\left(4 M_{p}^{2}\right)=\frac{\pi^{2} \alpha^{3}}{2 M_{p}^{2}} \frac{\beta_{p}}{\beta_{p}}\left|G_{S}^{p}\left(4 M_{p}^{2}\right)\right|^{2} \Rightarrow\left|G_{S}^{p}\left(4 M_{p}^{2}\right)\right| \equiv 1
$$

$$
\sigma_{p \bar{p}}\left(4 M_{p}^{2}\right)=0.85\left|G_{S}^{p}\left(4 M_{p}^{2}\right)\right|^{2} \mathrm{nb}
$$

BABAR: $\left|\boldsymbol{G}_{E}^{p}\right| /\left|\boldsymbol{G}_{M}^{p}\right|$ and $\sigma\left(e^{+} e^{-} \rightarrow p \bar{p}\right)$

Extracting $\left|G_{S}^{p}\right|$ and $\left|G_{D}^{p}\right|$ using

- data on $\sigma_{p \bar{p}}$
- data on $\left|G_{E}^{p}\right| /\left|G_{M}^{p}\right|$
- G_{E}^{p} / G_{M}^{p} phase $\phi \simeq 0$

$$
\left|G_{S}^{p}\right| \simeq \sqrt{1-\exp (-\pi \alpha / \beta)}
$$

- No need of resummation factor?

$e^{+} e^{-} \rightarrow n \bar{n}$

- Measured only once by FENICE at ADONE
- $\int \mathcal{L}=500 \mathrm{nb}^{-1}$ (15' at BESIII)
- ~ 100 candidates $n \bar{n}$ events!
- $\sigma(n \bar{n})>\sigma(p \bar{p})$?
- Not zero at threshold?

BESIII has the unique possibility to measure this cross section

- $J / \Psi \rightarrow \boldsymbol{n} \bar{n}\left(B R \simeq 2 \cdot 10^{-3}\right) \geq 10^{4}$ events
- $\Psi(2 S) \rightarrow n \bar{n}\left(B R \simeq 3 \cdot 10^{-4}\right) \geq 10^{3}$ events
- At threshold by means of ISR (boost)
- n, \bar{n} detection efficiency and pattern by means of: $J / \Psi \rightarrow n\left(\bar{p} \pi^{+}\right)$and $J / \Psi \rightarrow \bar{n}\left(p \pi^{-}\right)\left(\geq 10^{5}\right.$ events)

- Scan 2011
- Maximum energy: 2 GeV
- Efficiency ~30\%
- Above $\boldsymbol{n} \bar{\pi}$ threshold: $\sigma_{n \bar{n}}=0.8 \pm 0.2 \mathrm{nb}$

$p \bar{p}$ and $n \bar{n}$ data from BESIII

J / Ψ strong and electromagnetic phase

Resonant contributions

$$
\begin{gathered}
\Phi_{p}\left(G_{p}^{M}\right) \sim \Phi_{\gamma} \quad \Phi_{3 g}=0 \\
\Phi_{\gamma}: \text { relative } A_{3 g}-A_{p}
\end{gathered}
$$

$J / \Psi \rightarrow N \bar{N}$

$$
\begin{equation*}
\Phi_{p}=89^{\circ} \pm 15^{\circ} \tag{1}
\end{equation*}
$$

$J / \Psi \rightarrow V P\left(1^{-} 0^{-}\right) \quad \Phi_{p}=106^{\circ} \pm 10^{\circ}$
$J / \Psi \rightarrow P P\left(0^{-} 0^{-}\right)$
$\Phi_{p}=89.6^{\circ} \pm 9.9^{\circ}$
$J / \Psi \rightarrow V V\left(1^{-} 1^{-}\right)$
$\Phi_{p}=138^{\circ} \pm 37^{\circ}$

NO INTERFERENCE!

Non-resonant continuum

- affects the measured $B R$
affects Φ_{p}
INTERFERENCE WITH $A_{3 g}$!
${ }^{[1]}$ R. Baldini, C. Bini, E. Luppi, Phys. Lett. B404, 362 (1997); R. Baldini et al., Phys. Lett. B444, 111 (1998).
${ }^{[2]}$ L. Kopke and N. Wermes, Phys. Rep. 174, 67 (1989); J. Jousset et al., Phys. Rev. D41,1389 (1990).
[3] M. Suzuki et al., Phys. Rev. D60, 051501 (1999).

IMAGINARY AMPLITUDES HARD TO BE EXPLAINED!

- $J / \Psi \subset$ perturbative regime $\left(\longleftarrow \Gamma_{J} / \Psi \sim 93 \mathrm{KeV}\right)$
- pQCD \longrightarrow real $A_{\gamma}, A_{3 g}$
- QCD does not provide sizeable imaginary amplitudes $\left(\Phi_{p} 10^{\circ}\right.$ at most ${ }^{[1]}$)
- a $J / \Psi-V$ glueball mixing ${ }^{[2]}$ may explain imaginary amplitudes; and $\Psi(2 S)$?
- determination of phases Φ_{p} rely on theoretical hypotheses

EXPERIMENTAL DATA

- no interference term in the inclusive J / Ψ and $\Psi(2 S)$ production
- early evidence of an interf. term in $e^{+} e^{-} \rightarrow J / \Psi \rightarrow \mu^{+} \mu^{-} @$ SLAC ${ }^{[3]}$
- no clear evidence of interf. or glueball in $e^{+} e^{-} \rightarrow J / \Psi \rightarrow \rho \pi$ @ BESII ${ }^{[4]}$
${ }^{[1]} \mathrm{J}$. Bolz and P. Kroll, WU B 95-35.
${ }^{[2]}$ S.J. Brodsky, G.P. Lepage, S.F. Tuan, Phys. Rev. Lett. 59, 621 (1987).

Simulated $e^{+} e^{-} \rightarrow N \bar{N} @ s \sim M_{J / \psi}^{2}$

interference must have opposite sign as magnetic moments

continuum reference: $\sigma\left(e^{+} e^{-} \rightarrow p \bar{p}\right) \sim 11 p b^{[1]} \quad$ continuum reference: $\sigma\left(e^{+} e^{-} \rightarrow n \bar{n}\right) \sim 5 p b^{[1,2]}$

radiative corrections and beam energy spread (BESIII) included!

${ }^{[1]}$ B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 73, 012005 (2006).
${ }^{[2]}$ R. Baldini, S. Pacetti, A. Zallo, arxiv:0812.3283 [hep-ph].

Simulated $e^{+} e^{-} \rightarrow p \bar{p} @ s \sim M_{J / \psi}^{2}-\mathrm{BESIII}$ scenario

CORRECTIONS NEEDED!

- small effects from beam energy spread
- significant suppression from radiative corrections
$e^{+} e^{-} \rightarrow N \bar{N}$ at BESIII

Simulated $e^{+} e^{-} \rightarrow p \bar{p} @ s \sim M_{J / \psi}^{2}\left(20 p b^{-1}\right)$

continuum reference: $\sigma\left(e^{+} e^{-} \rightarrow p \bar{p}\right) \sim 11 \mathrm{pb}{ }^{[1]}$
radiative corrections and beam energy spread (BESIII) included!
${ }^{[1]}$ B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 73, 012005 (2006).

Simulated $e^{+} e^{-} \rightarrow n \bar{n} @ s \sim M_{J / \psi}^{2}\left(20 p b^{-1}\right)$

continuum reference: $\sigma\left(e^{+} e^{-} \rightarrow n \bar{n}\right) \sim 5 p b^{[1,2]}$
radiative corrections and beam energy spread (BESIII) included!
${ }^{[1]}$ B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 73, 012005 (2006).
${ }^{[2]}$ R. Baldini, S. Pacetti, A. Zallo, hep-ph0812.328v2.

$2012 \mathrm{~J} / \mathrm{\psi}$ line shape scan at BESIII

Energy selection depends on the process

- 2 points at low \sqrt{s} :
- fix continuum
- fix slope
- 2 points at the deep
- 1 point at resonance raise

Energy requested $[\mathrm{MeV}]$	Energy collected $[\mathrm{MeV}]$	$L_{\text {int }}$ $\left[\mathrm{pb}^{-1}\right]$
3050	3046	14.0
3060	3056	14.0
3083	3086	16.5
3090	3085	14.0
3093	3088	14.0
3097	3097	79.6

Analysis in progress!

Measurement of $J / \Psi \rightarrow p \bar{p}, n \bar{n}$

C dominant strong amplitude: $\left|A_{3 g}^{N}\right|>\left|A_{\gamma}^{N}\right|$

- isospin symmetry $\rightarrow\left|A_{3 g}^{p}\right|=\left|A_{3 g}^{n}\right|$
- $A_{\gamma}^{p}=-A_{\gamma}^{n}$ as magnetic moments
- assuming pQCD: $\operatorname{Im} A_{3 g}^{N} \sim 0$

$$
\frac{B(J / \Psi \rightarrow n \bar{n})}{B(J / \Psi \rightarrow p \bar{p})}=\left|\frac{A_{3 g}^{n}+A_{\gamma}^{n}}{\boldsymbol{A}_{3 g}^{p}+\boldsymbol{A}_{\gamma}^{p}}\right|^{2} \sim 2
$$

- BESII at BEPC [PLB591,42]: $\quad B(J / \Psi \rightarrow p \bar{p})=\left(\mathbf{2 . 2 6} \pm 0.01 \pm \mathbf{0 . 1 4)} \times \mathbf{1 0}^{\mathbf{- 3}}\right.$
- FENICE at ADONE [PLB444,111]: $\quad B(J / \Psi \rightarrow \boldsymbol{n})=(\mathbf{2 . 2} \pm \mathbf{0 . 4}) \times \mathbf{1 0}^{\mathbf{- 3}}$

$$
B(J / \Psi \rightarrow p \bar{p}) \underset{\Downarrow}{\Downarrow} B(J / \Psi \rightarrow n \bar{n})
$$

$$
\text { large } \boldsymbol{A}_{3 g}^{N}-\boldsymbol{A}_{\gamma}^{N} \text { relative phase }
$$

BESIII results: $J / \Psi \rightarrow p \bar{p}, n \bar{n}$

$\boldsymbol{n} \bar{n}$ identification

$$
\begin{array}{l|l}
\overline{\bar{心}} & B(J / \Psi \rightarrow n \bar{n})=(2.07 \pm 0.01 \pm 0.17) \cdot 10^{-3} \\
\stackrel{山}{\infty} & B(J / \Psi \rightarrow p \bar{p})=(2.112 \pm 0.004 \pm 0.031) \cdot 10^{-3}
\end{array}
$$

O $B(J / \Psi \rightarrow n \bar{n})=(2.2 \pm 0.4) \cdot 10^{-3}$
$B(J / \Psi \rightarrow p \bar{p})=(2.17 \pm 0.07) \cdot 10^{-3}$

$$
\Phi=(88.7 \pm 8.1)^{\circ}
$$

large phase between strong and e.m. amplitudes!

Conclusions and Perspectives with BESIII

- Asymptotic behavior not well understood

O Pointlike behavior not only at threshold
C Sommerfeld resummation factor needed?

- Neutral baryons puzzle
- More precise data on $\sigma_{p \bar{p}}$ above 3 GeV allow:
- accurate study of the step around 3 GeV
- precise measurement of the ratio $\left|G_{E}^{p}\right| /\left|G_{M}^{p}\right|$
- Unique possibility to measure the $\bar{n} \bar{n}$ cross section thanks to ISR and scan
- Measurement of the relative phase between e.m. and strong amplitudes in $J / \Psi \rightarrow N N$ decays
- First BESIII results confirm a large phase scenario and considerably improve PDG data on $\mathrm{J} / \Psi \rightarrow \boldsymbol{N} \bar{N}$.

BACK-UP SLIDES

BESIII main features

Drift Chamnber

Low gas misture ($60 \% \mathrm{He}, 40 \%$ Propane)
Carbon filter cylindres: $R_{\text {in }}=6.3 \mathrm{~cm}, T_{\text {in }}=1 \mathrm{~mm}$,

$$
R_{\text {out }}=81 \mathrm{~cm} T_{\text {out }}=1 \mathrm{~cm}
$$

- 6 Al stepped flanges: $\mathrm{T}=1.8 \mathrm{~cm}$
- 43 layers: $700025 \mu \mathrm{~m}$ gold-plated sense wires, 22000 Al field-shaping wires
- $\sigma_{x, y} \sim 130 \mu \mathrm{~m}, \sigma(D e / d x) \sim 6 \%$

CsI Calorimeter

- $6240 \mathrm{CsI}(\mathrm{TI}): 5280$ Barrel, 960 Endcaps, 13000 photodiodes
- $28 \times 5.2^{2} \mathrm{~cm}^{3}$
- $\Delta E / E \sim 2.5 \%$ at 1 GeV , noise $\sim 220 \mathrm{keV}$

Superconducting Magnet: 1 T

RPC μ Chambers

9/8 layers Barrel/Endcaps, Strip x, y 4cm
Plastic foil instead linseed oil: noise $\sim 0.1 \mathrm{~Hz} / \mathrm{cm}^{2}, \epsilon \sim 95 \%$

Space-like G_{E}^{p} / G_{M}^{p} measurements

Space-Iike data

$$
\begin{aligned}
& G_{E}^{p}=F_{1}^{p}+\frac{q^{2}}{4 M_{p}^{2}} F_{2}^{p} \\
& G_{M}^{p}=F_{1}^{p}+F_{2}^{p}
\end{aligned}
$$

Space-like
F_{1} and $\frac{q^{2}}{4 M_{p}^{2}} F_{2}$ cancellation

$$
\frac{G_{E}^{p}\left(q^{2}\right)}{G_{M}^{p}\left(q^{2}\right)}<1
$$

Time-like

F_{1} and $\frac{q^{2}}{4 M_{p}^{2}} F_{2}$ enhancement

$$
\left|\frac{G_{E}^{p}\left(q^{2}\right)}{G_{M}^{p}\left(q^{2}\right)}\right|>1
$$

Rosenbluth formula

$$
\frac{d \sigma}{d \Omega}=\left(\frac{d \sigma}{d \Omega}\right)_{\text {Mott }} \frac{1}{1-\tau}\left[G_{E}^{2}-\frac{\tau}{\epsilon} G_{M}^{2}\right] \quad \tau=\frac{q^{2}}{4 M_{N}^{2}}
$$

- Mott pointlike cross section

$$
\left(\frac{d \sigma}{d \Omega}\right)_{\text {Mott }}=\frac{4 \alpha^{2}}{\left(-q^{2}\right)^{2}} \frac{E_{2}^{3}}{E_{1}} \cos ^{2}\left(\theta_{e} / 2\right)
$$

- Photon polarization

$$
\epsilon=\left[1+2(1-\tau) \tan ^{2}\left(\theta_{e} / 2\right)\right]^{-1}
$$

Radiative corrections in Rosenbluth separation

Sachs form factors G_{E} and G_{M} are extracted from Born cross sections (one- γ exchange)

The Born term is obtained from experimental

$$
\frac{d \sigma^{\exp }}{d \Omega}=(1+\delta) \frac{d \sigma^{\text {Born }}}{d \Omega}
$$ cross sections correcting for radiative effects

δ depends on ϵ \Downarrow
 It affects the slope in Rosenbluth plot

Total correction

Polarization observables

A.I. Akhiezer, M.P. Rekalo, Sov. Phys. Dokl. 13, 572 (1968)

- Elastic scattering of longitudinally polarized $(h= \pm 1)$ electrons on nucleon target
© Hadronic tensor: $W_{\mu \nu}=\underbrace{W_{\mu \nu}(0)}_{\text {no pol. }}+\underbrace{W_{\mu \nu}(\vec{P})+W_{\mu \nu}\left(\vec{P}^{\prime}\right)}_{\text {ini. or fin. pol. of } N}+\underbrace{W_{\mu \nu}\left(\vec{P}, \vec{P}^{\prime}\right)}_{\text {ini. and fin. pol. of } N}$
- In case of polarized $(h= \pm 1)$ electrons on unpolarized nucleon target:

$$
P_{x}^{\prime}=-\frac{2 \sqrt{\tau(\tau-1)}}{G_{E}^{2}-\frac{\tau}{\epsilon} G_{M}^{2}} G_{E} G_{M} \tan \left(\frac{\theta_{e}}{2}\right) \quad \left\lvert\, \quad P_{z}^{\prime}=\frac{\left(E_{e}+E_{e}^{\prime}\right) \sqrt{\tau(\tau-1)}}{M\left(G_{E}^{2}-\frac{\tau}{\epsilon} G_{M}^{2}\right)} G_{M}^{2} \tan ^{2}\left(\frac{\theta_{e}}{2}\right)\right.
$$

$$
\frac{P_{X}^{\prime}}{P_{z}^{\prime}}=-\frac{2 M \cot \left(\theta_{e} / 2\right)}{E_{e}+E_{e}^{\prime}} \frac{G_{E}}{G_{M}}
$$

Neutral Baryons puzzle (BABAR)

$$
\sigma\left(e^{+} e^{-} \rightarrow \mathcal{B}^{0} \overline{\mathcal{B}}^{0}\right)=\frac{4 \pi \alpha^{2} \beta C_{0}}{3 q^{2}}\left[\left|G_{M}^{\mathcal{B}^{0}}\right|^{2}+\frac{2 M_{\mathcal{B}^{0}}^{2}}{q^{2}}\left|G_{E}^{\mathcal{B}^{0}}\right|^{2}\right] \underset{q \rightarrow 2 M_{\mathcal{B}^{0}}}{ } \frac{\pi \alpha^{2} \beta}{2 M_{\mathcal{B}^{0}}^{2}}\left|G^{\mathcal{B}^{0}}\right|^{2} \rightarrow 0
$$

No Coulomb correction at hadron level: $C_{0}=1$

Remnant of Coulomb interactions at quark level?

For any neutral baryon

$$
\sqrt{\sigma_{\mathcal{B}^{0} \overline{\mathcal{B}}^{0}}} \propto \frac{\left|\boldsymbol{G}^{\mathcal{B}^{0}}\right|}{M_{\mathcal{B}^{0}}}
$$

Coulomb correction
at quark level

$$
\sqrt{\sigma_{\mathcal{B}^{0} \overline{\mathcal{B}}^{0}}\left(4 M_{\mathcal{B}^{0}}^{2}\right)}=K \cdot \frac{\left|G^{\mathcal{B}^{0}}\right|}{M_{\mathcal{B}^{0}}}
$$

K is unknown but equal for all neutral baryons with equal quark content

$$
\begin{gathered}
\left(Y, I_{3}\right) \rightarrow\left(Y_{U}, U_{3}\right) \\
U_{3}=-\frac{1}{2} I_{3}+\frac{3}{4} Y \\
Y_{U}=-Q
\end{gathered}
$$

Coulomb correction at quark level

$$
\sqrt{\sigma_{\mathcal{B}^{0} \overline{\mathcal{B}}^{0}}\left(4 M_{\mathcal{B}^{0}}^{2}\right)}=K \cdot \frac{\left|G^{1 \mathcal{B}^{0}}\right|}{M_{\mathcal{B}^{0}}}
$$

K is unknown but equal for all neutral baryons with equal quark content

$$
\begin{gathered}
\left(Y, I_{3}\right) \rightarrow\left(Y_{U}, U_{3}\right) \\
U_{3}=-\frac{1}{2} I_{3}+\frac{3}{4} Y \\
Y_{U}=-Q
\end{gathered}
$$

$$
\text { Indirect relation: } \quad G^{\Sigma^{0}}-G^{\wedge}+\frac{2}{\sqrt{3}} G^{\wedge \Sigma^{0}}=0
$$

$$
M_{\Sigma^{0}} \sqrt{\sigma_{\Sigma^{0} \overline{\Sigma^{0}}}}-M_{\Lambda} \sqrt{\sigma_{\Lambda \bar{\Lambda}}}+\frac{2}{\sqrt{3}} \overline{M_{\Lambda \Sigma^{0}}} \sqrt{\sigma_{\Lambda \overline{\Sigma^{0}}}}=(-0.06 \pm 6.0) \times 10^{-4}
$$

Data and U-spin predictions at threshold

$$
\begin{aligned}
& \text { - } M_{\Sigma^{0}} \sqrt{\sigma_{\Sigma^{0}} \overline{\Sigma^{0}}}-M_{\wedge} \sqrt{\sigma_{\Lambda \bar{\Lambda}}}+\frac{2}{\sqrt{3}} \overline{M_{\Lambda \Sigma^{0}}} \sqrt{\sigma_{\Lambda \Sigma^{0}}}=(-0.06 \pm 6.0) \times 10^{-4} \\
& \text { - } \sigma\left(e^{+} e^{-} \rightarrow n \bar{n}\right)=\frac{1}{4}\left(3 \sqrt{\sigma_{\Lambda \bar{N}}} M_{\Lambda}-\sqrt{\sigma_{\Sigma^{0} \overline{\overline{0}^{0}}}} M_{\Sigma}\right)^{2} \frac{1}{M_{n}^{2}}=0.5 \pm 0.2 \mathrm{nb}
\end{aligned}
$$

$$
\left|G_{\mathrm{eff}}^{p}\right|^{2}=\frac{\sigma_{p \bar{p}}\left(q^{2}\right)}{\mathcal{C} \frac{16 \pi \alpha^{2}}{3} \frac{\sqrt{1-1 / \tau}}{4 q^{2}}\left(1+\frac{1}{2 \tau}\right)}
$$

$$
\overline{\mathcal{R}^{-1}}=\frac{1}{\Delta q} \int_{0}^{\Delta q}\left[1-e^{-\frac{\pi \alpha}{\beta}}\right] d \sqrt{q^{2}}
$$

$$
\left|G_{\text {no-sum }}^{p}\right|^{2}=\frac{\sigma_{p \bar{p}}\left(q^{2}\right)}{\mathcal{E} \frac{16 \pi \alpha^{2}}{3} \frac{\sqrt{1-1 / \tau}}{4 q^{2}}\left(1+\frac{1}{2 \tau}\right)}
$$

$$
\Delta q=\sqrt{q^{2}}-2 M_{p}
$$

IPN Orsay $2012 \bigcirc$ October $3^{\text {rd }}-5^{\text {th }}, 2012$

J / Ψ strong and electromagnetic decay amplitudes

$$
\begin{array}{rr}
x=\frac{M_{J / \psi}-\sqrt{s}}{\Gamma_{T O T} / 2} \quad A_{R}=\alpha\left(\frac{x}{1+x^{2}}+i \frac{1}{1+x^{2}}\right) & \Phi_{A_{\gamma}} \sim \Phi_{p}=\Phi_{G_{p}^{M}} \quad A_{N R}= \\
\Phi_{\alpha}=\arctan \frac{\left|A_{\gamma}\right| \sin \Phi_{p}}{\left|A_{3 g}+\left|+\left|A_{\gamma}\right| \cos \Phi_{p}\right.\right.} & \beta=\sqrt{\sigma\left(e^{+} e^{-} \Leftrightarrow p i\right.} \tag{1}\\
G_{p}^{M} \text { real @ } W \sim M_{J / \psi}
\end{array}
$$

$$
\Delta \Phi=\Phi_{p}-\Phi_{\alpha} \sim \Phi_{p}
$$

$\Delta \Phi$

$$
I(x)=\left|A_{R}+A_{N R}\right|^{2}
$$

$$
=\frac{\alpha^{2}}{1+x^{2}}+\beta^{2}-\frac{2 \beta \alpha}{1+x^{2}}(x \cos \Delta \Phi+\sin \Delta \Phi)
$$

${ }^{[1]}$ S.J. Brodsky, G.P. Lepage, S.F. Tuan, Phys. Rev. Lett. 59, 621 (1987).

Early evidence of interference in $e^{+} e^{-}$

J / Ψ production @ SPEAR (SLAC) ${ }^{[1]}$

${ }^{[1]}$ R. Baldini, C. Bini, E. Luppi, Phys. Lett. B404, 362 (1997).

Simulated $e^{+} e^{-} \rightarrow p \bar{p} @ s \sim M_{J / \psi}^{2}\left(20 p b^{-1}\right)$

${ }^{[1]}$ B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 73, 012005 (2006).

