$e^+e^- \rightarrow NN$ at BESIII

Marco Maggiora* on behalf of the BESIII Collaboration

* Department of Physics, University of Turin and INFN, Turin

Electromagnetic structure of hadrons: annihilation and scattering processes

GDR 3034 - Chromodynamique Quantique et Physique des Hadrons

GDR-PH-QCD, Meeting Groupe 2

BEPCII: *e*⁺*e*⁻ double ring collider

(IPN Orsay 2012) October 3rd - 5th, 2012 $e^+e^- \rightarrow N\overline{N}$ at BESIII

The **BESIII** detector

A significant improvement with respect to BESII

N Orsay 2012 📓 October 3rd - 5th, 2012 $e^+e^- \rightarrow N\overline{N}$ at BESIII

The **BESII** and **BESIII** detectors

BESIII @ BEPCII

Device	Performance	
MDC	$\sigma_p/p = 1.7\% \sqrt{1+p^2} , \ dE/dx = 8\%$	
TOF	180 ps (bhabha)	
EMC	$\sigma_{\sf E}/{\sf E} < 22\%/\sqrt{{\sf E}}$	
MUC	3 layers	
Magnet	0.4 T Solenoidal	

Performance
$\sigma_p/p=0.5\%~,~dE/dx<6\%$
80 ps barrel (bhabha), 100 ps endcap
$\sigma_{\sf E}/{\sf E} < 2.5\%/\sqrt{{\sf E}}$
9 barrel + 8 endcap layers
1 T Solenoidal

Physics at **BEPCII/BESIII**

- R_{had} and precision test of Standard Model
- Light hadron spectroscopy ($\phi f_0(980), \phi \pi^0, \dots$)
- Charm and charmonium physics
- τ physics
- Precision measurements of CKM matrix elements
- Search for new physics / new particles

Physics Channels	Energy (GeV)	Luminosity $(10^{33} \text{ cm}^{-2} \text{ s}^{-1})$	Events/year
J /Ψ	3.10	0.6	$1.0 imes10^{10}$
au	3.67	1.0	$1.2 imes 10^7$
Ψ(2 <i>S</i>)	3.69	1.0	$3.0 imes10^9$
D *	3.77	1.0	$2.5 imes 10^{7}$
Ds	4.03	0.6	$1.0 imes10^{6}$
Ds	4.14	0.6	$2.0 imes10^{6}$

BEPCII / BESIII milestones

Mar. 2008:	Collisions at 500 mA $ imes$ 500 mA,
	Luminosity: $1 \times 10^{32} cm^{-2} s^{-1}$
Apr. 30, 2008:	Move BESIII to IP
July 18, 2008:	First <i>e</i> ⁺ <i>e</i> ⁻ collision event in BESIII
Apr. 14, 2009:	\sim 106 M Ψ (2 <i>S</i>) events (150 <i>pb</i> ⁻¹) \sim 4 \times CLEO-c
	$(\sim 42 p b^{-1} \text{ at } 3.65 \text{ GeV})$
July 28, 2009:	\sim 225 M J/ Ψ events (65pb ⁻¹) \sim 4 \times BESII
2010-2011:	\sim 2.9 \textit{fb}^{-1} at ψ (3770) \sim 11 $ imes$ CLEO-c
	(\sim 70 <i>pb</i> ⁻¹ scanning in the ψ (3770) energy region)
May, 2011:	\sim 0.5 fb ⁻¹ at 4.01 GeV (Ds and XYZ spectroscopy)
2012:	\sim 0.4 B $\Psi(2S)$ events \sim 16 \times CLEO-c
	\sim 1 B J/ Ψ events \sim 18 \times BESII

 $\begin{array}{c} \textbf{Record Luminosity} \\ \textbf{6.5} \times 10^{32} cm^{-2} s^{-1} \\ \textbf{or} \\ \textbf{8} \times \textbf{CESRc} \\ \textbf{45} \times \textbf{BEPC} \end{array}$

7

 $e^+e^-
ightarrow N\overline{N}$ at BESIII

IPN Orsay 2012 a October 3rd - 5th, 2012 $e^+e^- \rightarrow N\overline{N}$ at BESIII

Nucleon form factors and cross sections

Nucleon current operator (Dirac & Pauli)

$$\overline{\Gamma^{\mu}(q)} = \gamma^{\mu}F_{1}(q^{2}) + \frac{i}{2M_{B}}\sigma^{\mu\nu}q_{\nu}F_{2}(q^{2})$$
Electric and Magnetic Form Factors

$$\overline{G_{E}(q^{2})} = F_{1}(q^{2}) + \tau F_{2}(q^{2})} \quad \tau = \frac{q^{2}}{4M_{B}^{2}}$$

Pointlike fermions e.g. $e^+e^- \rightarrow \mu^+\mu^-$: $\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \beta_\mu C}{4q^2} \left(2 - \beta_\mu^2 \sin^2 \theta\right) \implies |\mathbf{G}_E| = |\mathbf{G}_M| \equiv 1$

IPN Orsay 2012 📓 October 3rd - 5th, 2012 $e^+e^- \rightarrow N\overline{N}$ at BESIII

Analyticity of baryon form factors

QCD counting rule constrains the asymptotic behaviour

Matveev, Muradyan, Tevkheldize, Brodsky, Farrar

Counting rule:
$$q^2 \to -\infty$$

 $i = 1$ Dirac, $i = 2$ Pauli FF
Analyticity: $q^2 \to \pm\infty$
(Phragmèn Lindelöf)
 $F_i(q^2) \propto (-q^2)^{-(i+1)} \Rightarrow G_{E,M} \propto (-q^2)^{-2}$
 $G_{E,M}(-\infty) = G_{E,M}(+\infty)$

(IPN Orsay 2012) October 3rd - 5th, 2012 $e^+e^- \rightarrow N\overline{N}$ at BESIII

G_{F}^{p} and G_{M}^{p} with Rosenbluth separation

IPN Orsay 2012 October $3^{rd} - 5^{th}$, 2012 $e^+e^- \rightarrow N\overline{N}$ at BESIII

$G_{E}^{\rho}/G_{M}^{\rho}$ in polarization transfer experiments

New Rosenbluth separation data from JLab still do not agree with polarization data

12

G_{F}^{n} and G_{M}^{n} with different techniques

13

Orsay 2012 💐 October 3rd - 5th, 2012

 $e^+e^-
ightarrow N\overline{N}$ at BESIII

RC in Rosenbluth separation: an example

PRD50,5491(94)

Rosenbluth \rightarrow Polarization

Two-photon exchange (2γ -GPD)

- Two-photon exchange: contributions from intermediate far off-shell states
- Two hard photons
- Structure of nucleon: partonic "handbag" and GPD's

Structure function radiative corrections (SF-RC)

- Hard bremsstrahlung from electron lines
- No co-linearity approximation
- **Two-photon exchange contribution** \sim 1%

 2γ -GPD and SF-RC change the slope in Rosenbluth plots

 2γ -GPD and SF-RC have negligible contribution to the polarized cross section ratio

Two-photon from $GEp2\gamma@JLab$ experiment PRL 106,132501(11)

The 1γ - 2γ interference terms have opposite signs in e^+p and e^-p elastic scattering cross sections σ_{\pm}

A large (some %) 2γ contribution produces deviations from unity as a function of ϵ for the ratio σ_+/σ_-

Time-like magnetic proton form factor

IPN Orsay 2012 🗿 October 3rd - 5th, 2012 $e^+e^- \rightarrow N\overline{N}$ at BESIII

Asymptotic behavior

$e^+e^- \rightarrow p\overline{p}$ angular distribution (BABAR)

PRD73,012005(06)

$\cos \theta_p$ distributions form threshold up to 3 GeV [intervals in $E_{CM} \equiv q$ (GeV)]

Orsay 2012 🔯 October 3rd - 5th, 2012

Time-like $|G_E^p/G_M^p|$ measurements

$$\frac{d\sigma}{d\cos\theta} = \frac{\pi\alpha^2\beta C}{2q^2} |G_M^p|^2 \left[(1+\cos^2\theta) + \frac{4M_p^2}{q^2\mu_p^2} \sin^2\theta |\mathbf{R}|^2 \right] \qquad \mathbf{R}(q^2) = \mu_p \frac{G_E^p(q^2)}{G_M^p(q^2)}$$

$\gamma \gamma$ exchange from $e^+e^- \rightarrow p\overline{p}\gamma \ BABAR$ data

E. Tomasi-Gustafsson, E.A. Kuraev, S. Bakmaev, SP PLB659,197(08)

$$\mathcal{A}\left(\theta, q^{2}\right) = \frac{\frac{d\sigma}{d\Omega}\left(\theta, q^{2}\right) - \frac{d\sigma}{d\Omega}\left(\pi - \theta, q^{2}\right)}{\frac{d\sigma}{d\Omega}\left(\theta, q^{2}\right) + \frac{d\sigma}{d\Omega}\left(\pi - \theta, q^{2}\right)} = \frac{\frac{d\sigma}{d\Omega}\left(\theta, q^{2}\right) - \frac{d\sigma}{d\Omega}\left(\pi - \theta, q^{2}\right)}{2\frac{d\sigma^{\mathsf{Born}}}{d\Omega}\left(\theta, q^{2}\right)}$$

(IPN Orsay 2012) October $3^{rd} - 5^{th}$, 2012 $e^+e^- \rightarrow N\overline{N}$ at BESIII

$|G^{ ho}_{E}(q^{2})|$ and $|G^{ ho}_{M}(q^{2})|$ from $\sigma_{ ho\overline{ ho}}$ and DR

$$|G_{ ext{eff}}(q^2)|^2 = rac{\sigma_{
ho\overline{
ho}}(q^2)}{rac{4\pilpha^2eta \mathcal{C}}{3s}}\left(1+rac{1}{2 au}
ight)^{-1}$$

- Usually what is extracted from the cross section $\sigma(e^+e^- \rightarrow p\overline{p})$ is the effective time-like form factor $|G^p_{eff}|$ obtained assuming $|G^p_E| = |G^p_M|$ i.e. $|R| = \mu_p$
- Using DR's to parameterize *R* and the *BABAR* data on $\sigma(e^+e^-\leftrightarrow p\overline{p})$, $|G_E^p|$ and $|G_M^p|$ may be disentangled

BESIII can measure separately $|G_E^p|$ and $|G_M^p|$

Cfr. talk by Simone Pacetti

PN Orsay 2012 📓 October 3rd - 5th, 2012 $e^+e^- \rightarrow N\overline{N}$ at BESIII

$|G^{ ho}_{E}(q^{2})|$ and $|G^{ ho}_{M}(q^{2})|$ from $\sigma_{ ho\overline{ ho}}$ and DR

$$|G_M(q^2)|^2 = rac{\sigma_{
ho\overline{
ho}}(q^2)}{rac{4\pilpha^2eta \mathcal{L}}{3s}}\left(1+rac{|R(q^2)|}{2\mu_
ho au}
ight)^{-1}$$

- Usually what is extracted from the cross section $\sigma(e^+e^- \rightarrow p\overline{p})$ is the effective time-like form factor $|G^p_{eff}|$ obtained assuming $|G^p_E| = |G^p_M|$ i.e. $|R| = \mu_p$
- Using DR's to parameterize *R* and the BABAR data on σ(e⁺e⁻↔ pp̄), |G^P_E| and |G^P_M| may be disentangled
- BESIII can measure separately |G^p_E| and |G^p_M|

Cfr. talk by Simone Pacetti

PN Orsay 2012 📓 October 3rd - 5th, 2012 $e^+e^- \rightarrow N\overline{N}$ at BESIII

Future data on $\boldsymbol{R} = \mu_p \boldsymbol{G}_E^p / \boldsymbol{G}_M^p$

PN Orsay 2012 2 October $3^{rd} - 5^{th}$, 2012 $e^+e^- \rightarrow N\overline{N}$ at BESIII

(JPN Orsay 2012 📓 October 3rd - 5th, 2012 $e^+e^- \rightarrow N\overline{N}$ at BESIII

ISR: Physics Motivations

 Existing results, obtained by BABAR (ISR), show interesting and unexpected behaviors, mainly at thresholds, for

There are physical limits in reaching the threshold of many of these channels via energy scan (stable hadrons produced at rest can not be detected)

The Initial State Radiation technique provides a unique tool to access threshold regions working at higher resonances

Initial State Radiation

•
$$\frac{d^{2}\sigma}{dE_{\gamma}d\theta_{\gamma}} = W(E_{\gamma},\theta_{\gamma}) \cdot \sigma_{e^{+}e^{-} \to X_{had}}(s)$$

•
$$W(E_{\gamma},\theta_{\gamma}) = \frac{\alpha}{\pi x} \left(\frac{2-2x+x^{2}}{\sin^{2}\theta_{\gamma}}\right)$$

•
$$s = q^{2}, q \dots X_{had} \text{ momentum}$$

•
$$E_{\gamma}, \theta_{\gamma} \dots CM \gamma \text{ energy, scatt. ang.}$$

•
$$E_{CM} \dots CM e^{+}e^{-} \text{ energy}$$

•
$$x = E_{\gamma}/2E_{CM}$$

Advantages

ISR: BESIII vs BABAR

ISR: BESIII vs BABAR

(IPN Orsay 2012 📓 October 3rd - 5th, 2012 $e^+e^- \rightarrow N\overline{N}$ at BESIII

ISR and final state radiation

For large values of x or at small angle θ_{γ} of photon emission the final state radiation is strongly suppressed

Orsay 2012 📓 October 3rd - 5th, 2012

 $e^+e^-
ightarrow N\overline{N}$ at BESIII

ISR angular distribution and zero-degree tagging

PN Orsay 2012 📓 October 3rd - 5th, 2012 $e^+e^- \rightarrow N\overline{N}$ at BESIII

BESIII Zero-Degree Detector

J/Ψ, Ψ(2S), ψ(3770) resonances decay with high BR's to final states with π⁰ and γ_{FS} (final state)

• At BESIII these decay channels represent severe backgrounds for typical ISR final states with $\gamma_{\rm IS}$ detected at wide angle

ISR angular distribution is peaked at small angles

A zero-degree radiative photon tagger will suppress most of these backgrounds

A new zero-degree detector (ZDD), has been installed on summer 2011 at BESIII to tag ISR photons as well as to measure the luminosity

JPN Orsay 2012 a October 3rd - 5th, 2012 $e^+e^- \rightarrow N\overline{N}$ at BESIII

Pointlike Baryons?

∐PN Orsay 2012 🧱 October 3rd - 5th, 2012

 $e^+e^-
ightarrow N\overline{N}$ at BESIII

The Coulomb Factor

IPN Orsay 2012 📓 October 3rd - 5th, 2012 $e^+e^- \rightarrow N\overline{N}$ at BESIII

 $e^+e^-
ightarrow p\overline{p}$

34

easily achieve the BABAR statistics

PN Orsay 2012 📓 October 3rd - 5th, 2012 $e^+e^- \rightarrow N\overline{N}$ at BESIII

Sommerfeld Enhancement and Resummation Factors

IPN Orsay 2012 📓 October 3rd - 5th, 2012 $e^+e^- \rightarrow N\overline{N}$ at BESIII

BABAR: $e^+e^- ightarrow p\overline{p}$

36

BABAR: $|G_E^p|/|G_M^p|$ and $\sigma(e^+e^- \rightarrow p\overline{p})$

[PRD73, 012005]

IPN Orsay 2012 🧱 October 3rd - 5th, 2012 e⁺e

 $e^+e^- \rightarrow N\overline{N}$ at BESIII

$e^+e^- \rightarrow n\overline{n}$

BESIII has the unique possibility to measure this cross section

- $J/\Psi \rightarrow n\overline{n}$ (BR $\simeq 2 \cdot 10^{-3}$) $\geq 10^4$ events
- $\Psi(2S) \rightarrow n\overline{n}$ (BR $\simeq 3 \cdot 10^{-4}$) $\geq 10^3$ events
- At threshold by means of ISR (boost)

• n, \overline{n} detection efficiency and pattern by means of: $J/\Psi \rightarrow n(\overline{p}\pi^+)$ and $J/\Psi \rightarrow \overline{n}(p\pi^-)$ ($\geq 10^5$ events)

38

$e^+e^- \rightarrow n\overline{n}$: preliminary from SND

p \overline{p} and **n** \overline{n} data from **BESIII**

- One year of data taking:
- Average luminosity:
- Center of mass energy:
- Detection efficiences:
- Number of events:

$$\begin{split} \mathcal{T} &= 1.5 \times 10^7 \text{ s} \\ \overline{\mathcal{L}} &= 3 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1} \\ \mathcal{E}_{c.m.} &= 3.77 \text{ GeV} \\ \epsilon_{n\overline{n}} &= 0.4 \quad \epsilon_{p\overline{p}} = 0.8 \\ \mathcal{N}_{n\overline{n}} &\simeq 1000 \quad \mathcal{N}_{p\overline{p}} \simeq 2000 \end{split}$$

(JPN Orsay 2012) October 3rd - 5th, 2012 $e^+e^- \rightarrow N\overline{N}$ at BESIII

J/Ψ strong and electromagnetic phase

(IPN Orsay 2012) October 3rd - 5th, 2012 $e^+e^- \rightarrow N\overline{N}$ at BESIII

J/Ψ strong and electromagnetic decay amplitudes

strong $\rightarrow A_{3g}$
WWWW Married hadrons
electromagnetic $\longrightarrow A_{\gamma}$
WWWW Madrons
non-resonant continuum $\rightarrow A_{QED}$
hadrons

Resonant contributions

 $egin{aligned} \Phi_{
ho}(G^{M}_{
ho}) &\sim \Phi_{\gamma} & \Phi_{3g} = 0 \ \Phi_{\gamma} \text{: relative } A_{3g} - A_{
ho} \end{aligned}$

$\bigcirc J/\Psi ightarrow Nar{N}$	$\Phi_{ m p}=-89^{\circ}\pm15^{\circ}$	[1]
$igg) J/\Psi \rightarrow VP (1^-0^-)$	$\Phi_{\rho}^{'} = 106^{\circ} \pm 10^{\circ}$	[2]
$\bigcirc J/\Psi \rightarrow PP(0^-0^-)$	$\Phi_{ m p} = 89.6^{\circ} \pm 9.9^{\circ}$	[3]
$\int J/\Psi \to VV (1^-1^-)$	$\Phi_p = 138^\circ \pm 37^\circ$	[3]

NO INTERFERENCE!

Non-resonant continuum

affects the measured BR	[4]
) affects Φ_p	[4]

INTERFERENCE WITH A3g!

^[1] R. Baldini, C. Bini, E. Luppi, Phys. Lett. B404, 362 (1997); R. Baldini et al., Phys. Lett. B444, 111 (1998).

^[2] L. Kopke and N. Wermes, Phys. Rep. 174, 67 (1989); J. Jousset et al., Phys. Rev. D41,1389 (1990).

^[3] M. Suzuki et al., Phys. Rev. D60, 051501 (1999).

^[4] P. Wang, arXiv:hep-ph/0410028v2 and references therein.

(IPN Orsay 2012 📓 October 3rd - 5th, 2012 $e^+e^- \rightarrow N\overline{N}$ at BESIII

J/Ψ strong and electromagnetic decay amplitudes

IMAGINARY AMPLITUDES HARD TO BE EXPLAINED!

- $\bullet~J/\Psi \subset$ perturbative regime (\longleftarrow $\Gamma_{J}\!/\Psi \sim 93 \mbox{\it KeV}$)
- pQCD \longrightarrow real A_{γ} , A_{3g}
- QCD does not provide sizeable imaginary amplitudes (Φ_p 10° at most ^[1])
- a $J/\Psi V$ glueball mixing ^[2] may explain imaginary amplitudes; and $\Psi(2S)$?
- determination of phases Φ_p rely on theoretical hypotheses

EXPERIMENTAL DATA

- no interference term in the inclusive J/Ψ and $\Psi(2S)$ production
- early evidence of an interf. term in $e^+e^- o J/\Psi o \mu^+\mu^-$ @ SLAC ^[3]
- no clear evidence of interf. or glueball in $e^+e^- o J/\Psi o
 ho\pi$ @ BESII ^[4]

^[1] J. Bolz and P. Kroll, WU B 95-35. ^[2] S.J. Brodsky, G.P. Lepage, S.F. Tuan, Phys. Rev. Lett. 59, 621 (1987). (IPN Orsay 2012 October 3rd - 5th, 2012 $e^+e^- \rightarrow N\overline{N}$ at BESIII

Simulated
$$e^+e^- o Nar{N} \ {}^0 \ s \sim M_{J/\psi}^2$$

interference must have opposite sign as magnetic moments

radiative corrections and beam energy spread (BESIII) included!

B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 73, 012005 (2006).
 R. Baldini, S. Pacetti, A. Zallo, arxiv:0812.3283 [hep-ph].

PN Orsay 2012 and October $3^{rd} - 5^{th}$, 2012 $e^+e^- \rightarrow N\overline{N}$ at BESIII

Simulated $e^+e^- o par{p} @ s \sim M_{J/\Psi}^2$ - BESIII scenario

Orsay 2012 💈

CORRECTIONS NEEDED!

- small effects from beam energy spread
- significant suppression from radiative corrections

🙀 October 3rd - 5th, 2012 🥂 e⁺e

Simulated $e^+e^- ightarrow par{p}$ @ $s \sim M_{J/\psi}^2$ (20 pb^{-1})

continuum reference: $\sigma (e^+e^- \rightarrow p\bar{p}) \sim 11 \ pb^{[1]}$

radiative corrections and beam energy spread (BESIII) included!

^[1] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 73, 012005 (2006).

Simulated $e^+e^- ightarrow n\bar{n}$ @ $s \sim M_{J/\Psi}^2$ (20 pb^{-1})

continuum reference: $\sigma (e^+e^- \rightarrow n\bar{n}) \sim 5 \ pb^{[1,2]}$

radiative corrections and beam energy spread (BESIII) included!

B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 73, 012005 (2006).
 R. Baldini, S. Pacetti, A. Zallo, hep-ph0812.328v2.

2012 J/Ψ line shape scan at **BESIII**

Orsay 2012 and October 3rd - 5th, 2012

 $e^+e^- \rightarrow N\overline{N}$ at BESIII

2012 J/Ψ line shape scan at **BESIII**

Energy requested [<i>MeV</i>]	Energy collected [<i>MeV</i>]	L _{int} [pb ⁻¹]
3050	3046	14.0
3060	3056	14.0
3083	3086	16.5
3090	3085	14.0
3093	3088	14.0
3097	3097	79.6

Analysis in progress!

(IPN Orsay 2012) October 3rd - 5th, 2012 $e^+e^- \rightarrow N\overline{N}$ at BESIII

Measurement of $J/\Psi \rightarrow p\overline{p}$, $n\overline{n}$

• dominant strong amplitude: $|A_{3g}^N| > |A_{\gamma}^N|$

- isospin symmetry $\rightarrow |A_{3g}^{p}| = |A_{3g}^{n}|$
- $A^{p}_{\gamma} = -A^{n}_{\gamma}$ as magnetic moments
- assuming pQCD: Im $A_{3g}^N \sim 0$

$$rac{B(J/\Psi
ightarrow n\overline{n})}{B(J/\Psi
ightarrow p\overline{p})} = \left|rac{A^n_{3g} + A^n_{\gamma}}{A^p_{3g} + A^p_{\gamma}}
ight|^2 \sim 2$$

■ BESII at BEPC [PLB591,42]: $B(J/\Psi \to p\overline{p}) = (2.26 \pm 0.01 \pm 0.14) \times 10^{-3}$ ■ FENICE at ADONE [PLB444,111]: $B(J/\Psi \to n\overline{n}) = (2.2 \pm 0.4) \times 10^{-3}$

(IPN Orsay 2012 📓 October 3rd - 5th, 2012 $e^+e^- \rightarrow N\overline{N}$ at BESIII

nn identification

$\Phi = (88.7 \pm 8.1)^{\circ}$

large phase between strong and e.m. amplitudes!

Orsay 2012 October $3^{rd} - 5^{th}$, 2012 $e^+e^- \rightarrow N\overline{N}$ at BESIII

Conclusions and Perspectives with **BESIII**

- Asymptotic behavior not well understood
- Pointlike behavior not only at threshold
- Sommerfeld resummation factor needed?
- Neutral baryons puzzle
- More precise data on $\sigma_{p\bar{p}}$ above 3 GeV allow:
 - accurate study of the step around 3 GeV
 - precise measurement of the ratio $|G_E^p|/|G_M^p|$
- Unique possibility to measure the nn cross section thanks to ISR and scan
- Measurement of the relative phase between e.m. and strong amplitudes in $J/\Psi \rightarrow N\overline{N}$ decays

• First BESIII results confirm a large phase scenario and considerably improve PDG data on $J/\Psi \rightarrow N\overline{N}$.

BACK-UP SLIDES

(IPN Orsay 2012) October 3rd - 5th, 2012 $e^+e^- \rightarrow N\overline{N}$ at BESIII

BESIII main features

Drift Chamnber

- Low gas misture (60% He, 40% Propane)
- Carbon filter cylindres: $R_{in} = 6.3$ cm, $T_{in} = 1$ mm, $R_{out} = 81$ cm $T_{out} = 1$ cm
- 6 Al stepped flanges: T = 1.8 cm
- 43 layers: 7000 25 μm gold-plated sense wires, 22000 Al field-shaping wires

Csl Calorimeter

- 6240 CsI(TI): 5280 Barrel, 960 Endcaps, 13000 photodiodes
 28 × 5.2² cm³
- ho $\Delta E/E\sim$ 2.5% at 1 GeV, noise \sim 220 keV

Superconducting Magnet: 1 T

RPC μ Chambers

9/8 layers Barrel/Endcaps, Strip x, y 4cm Plastic foil instead linseed oil: noise \sim 0.1 Hz/cm², $\epsilon \sim$ 95%

IPN Orsay 2012 October 3rd - 5th, 2012 $e^+e^- \rightarrow N\overline{N}$ at BESIII

Space-like G_E^p/G_M^p measurements

$$G_E^p = F_1^p + \frac{q^2}{4M_p^2}F_2^p$$
$$G_M^p = F_1^p + F_2^p$$

$$egin{aligned} F_1 & ext{and} \; rac{q^2}{4M_p^2}F_2 \; ext{enhancement} \ & \left|rac{G_E^p(q^2)}{G_M^p(q^2)}
ight| > 1 \end{aligned}$$

55

(IPN Orsay 2012 📓 October 3rd - 5th, 2012 $e^+e^- \rightarrow N\overline{N}$ at BESIII

Rosenbluth separation

56

Rosenbluth formula

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \frac{1}{1-\tau} \left[G_E^2 - \frac{\tau}{\epsilon} G_M^2\right] \qquad \tau = \frac{q^2}{4M_N^2}$$
Mott pointlike cross section
$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} = \frac{4\alpha^2}{(-q^2)^2} \frac{E_2^3}{E_1} \cos^2(\theta_e/2)$$
Photon polarization
$$\epsilon = \left[1 + 2(1-\tau) \tan^2(\theta_e/2)\right]^{-1}$$

PN Orsay 2012 📓 October 3rd - 5th, 2012 $e^+e^- \rightarrow N\overline{N}$ at BESIII

Radiative corrections in Rosenbluth separation

Sachs form factors G_E and G_M are extracted from Born cross sections (one- γ exchange)

The Born term is obtained from experimental cross sections correcting for radiative effects

$$\frac{\textit{d}\sigma^{\rm exp}}{\textit{d}\Omega} = (1+\delta) \frac{\textit{d}\sigma^{\rm Born}}{\textit{d}\Omega}$$

IPN Orsay 2012 📓 October 3rd - 5th, 2012 $e^+e^- \rightarrow N\overline{N}$ at BESIII

Polarization observables

A.I. Akhiezer, M.P. Rekalo, Sov. Phys. Dokl. 13, 572 (1968)

• Elastic scattering of longitudinally polarized ($h = \pm 1$) electrons on nucleon target

• Hadronic tensor: $W_{\mu\nu} = \underbrace{W_{\mu\nu}(0)}_{\text{no pol.}} + \underbrace{W_{\mu\nu}(\vec{P}) + W_{\mu\nu}(\vec{P}')}_{\text{ini. or fin. pol. of }N} + \underbrace{W_{\mu\nu}(\vec{P}, \vec{P}')}_{\text{ini. and fin. pol. of }N}$ • In case of polarized ($h = \pm 1$) electrons on unpolarized nucleon target:

$$P'_{x} = -\frac{2\sqrt{\tau(\tau-1)}}{G_{E}^{2} - \frac{\tau}{\epsilon}G_{M}^{2}} G_{E}G_{M} \tan\left(\frac{\theta_{e}}{2}\right) \qquad P'_{z} = \frac{(E_{e} + E'_{e})\sqrt{\tau(\tau-1)}}{M\left(G_{E}^{2} - \frac{\tau}{\epsilon}G_{M}^{2}\right)} G_{M}^{2} \tan^{2}\left(\frac{\theta_{e}}{2}\right)$$
$$\frac{P'_{x}}{P'_{z}} = -\frac{2M\cot(\theta_{e}/2)}{E_{e} + E'_{e}} \frac{G_{E}}{G_{M}}$$

Neutral Baryons puzzle (BABAR)

PRD76, 092006

Orsay 2012 📓 October 3rd - 5th, 2012

Baryon octet and U-spin

arXiv:0812.3283

Indirect relation: $G^{\Sigma^0} - G^{\Lambda} + \frac{2}{\sqrt{3}}G^{\Lambda\Sigma^0} = 0$

 $\textit{M}_{\Sigma^{0}}\sqrt{\sigma_{\Sigma^{0}\overline{\Sigma^{0}}}}-\textit{M}_{\Lambda}\sqrt{\sigma_{\Lambda\overline{\Lambda}}}+\frac{2}{\sqrt{3}}\overline{\textit{M}_{\Lambda\Sigma^{0}}}\sqrt{\sigma_{\Lambda\overline{\Sigma^{0}}}}=(-0.06\pm6.0)\times10^{-4}$

60

PN Orsay 2012 📓 October 3rd - 5th, 2012 $e^+e^- \rightarrow N\overline{N}$ at BESIII

Baryon octet and U-spin

Orsay 2012 and October 3rd - 5th, 2012

arXiv:0812.3283

60

Data and U-spin predictions at threshold

•
$$M_{\Sigma^0}\sqrt{\sigma_{\Sigma^0\overline{\Sigma^0}}} - M_{\Lambda}\sqrt{\sigma_{\Lambda\overline{\Lambda}}} + \frac{2}{\sqrt{3}}\overline{M_{\Lambda\Sigma^0}}\sqrt{\sigma_{\Lambda\Sigma^0}} = (-0.06 \pm 6.0) \times 10^{-4}$$

• $\sigma(e^+e^- \to n\overline{n}) = \frac{1}{4}(3\sqrt{\sigma_{\Lambda\overline{\Lambda}}}M_{\Lambda} - \sqrt{\sigma_{\Sigma^0\overline{\Sigma^0}}}M_{\Sigma})^2\frac{1}{M_n^2} = 0.5 \pm 0.2$ nb

4 PN Orsay 2012 2 October 3rd - 5th, 2012 $e^+e^- \rightarrow N\overline{N}$ at BESIII

BABAR: integrated Sommerfeld factor and G_{eff}^{p}

$$|G_{\text{eff}}^{p}|^{2} = \frac{\sigma_{p\bar{p}}(q^{2})}{\frac{c}{16\pi\alpha^{2}}\frac{\sqrt{1-1/\tau}}{4q^{2}}\left(1+\frac{1}{2\tau}\right)}$$
$$|G_{\text{no-sum}}^{p}|^{2} = \frac{\sigma_{p\bar{p}}(q^{2})}{\frac{c}{16\pi\alpha^{2}}\frac{\sqrt{1-1/\tau}}{4q^{2}}\left(1+\frac{1}{2\tau}\right)}$$

$$\overline{\mathcal{R}^{-1}} = \frac{1}{\Delta q} \int_0^{\Delta q} \left[1 - e^{-\frac{\pi \alpha}{\beta}} \right] d\sqrt{q^2}$$
$$\Delta q = \sqrt{q^2} - 2M_p$$

PN Orsay 2012 📓 October 3rd - 5th, 2012 $e^+e^- \rightarrow N\overline{N}$ at BESIII

J/Ψ strong and electromagnetic decay amplitudes

non resonant

$$\Phi_{A_{\gamma}} \sim \Phi_{p} = \Phi_{G_{p}^{M}} \quad A_{NR} = -\beta e^{j\Phi_{p}}$$

$$\beta = \sqrt{\sigma} (e^{+}e^{-} \Leftrightarrow p\bar{p})$$

$$G_{p}^{M} \text{ real } @ W \sim M_{J/\Psi} \quad [1]$$

$$\Delta \Phi = \Phi_{
ho} - \Phi_{lpha} \sim \Phi_{
ho}$$

Early evidence of interference in $e^+e^- ightarrow \mu^+\mu^-$

Simulated $e^+e^- ightarrow par{p} @ s \sim M_{J/\psi}^2$ (20 pb^{-1})

^[1] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 73, 012005 (2006).

65

V Orsay 2012 📓 October 3rd - 5th, 2012 $e^+e^- \rightarrow N\overline{N}$ at BESIII