

CINS

In2p3

Study of elementary reactions with the High Acceptance Di-Electron Spectrometer at GSI

Béatrice Ramstein

Institut de Physique Nucléaire d'Orsay

Outline

Introduction:

• General context of HADES experiments In-medium modifications of vector mesons

Interest of elementary reactions

Results from pp and dp reactions with HADES

- inclusive/exclusive dilepton channels
 Sensitivity to electromagnetic Time-Like form factors
- exclusive hadronic channels

Perspectives with the GSI pion beam

Conclusions

Motivations of the HADES experiment

Dileptons and vector mesons

 ρ, ω

on-shell

BR_ρ= 410⁻⁵ BR_ω= 710⁻⁵

 $\rho/\omega/\phi$

e

• $V \rightarrow \ell^+ \ell^- J^P = 1^-$

Undistorted access to in-medium vector meson spectral functions \rightarrow Test predictions of medium modifications

 Vector Dominance Model: coupling of a virtual or real photon to any electromagnetic hadronic current is mediated by a vector meson

Hades « strategy »

 Study dilepton emission in dense and hot matter (cf. DLS/Berkeley) A+A reactions in the 1-2 AGeV energy range C+C, Ar+KCI, Au+Au (2012), Ag+Ag(2013?)

 cold matter at normal nuclear density p+Nb 3.5 GeV (cf KEK, Jlab, CBELSA/TAPS)

 \checkmark Elementary collisions pp, dp and (in future) π -p

- reference to heavy-ion spectra
- understand dilepton production mechanism (exclusive channels)
- dilepton emission is probing time-like electromagnetic structure of hadronic transitions!

✓ Simultaneous measurements of hadronic channels (pp →NN π , pp →NN $\pi\pi$) Cross-checks on known channels, detailed information on baryonic resonance production

 \checkmark strangeness measurement program: K⁻, K⁰, ϕ , Σ (1385), Λ (1405)

The Collaboration

Tofino

TO

bmb+f - Förderschwerpunkt

Großgeräte der physikalischen

Grundlagenforschung

- > Catania (INFN LNS), Italy
 - Cracow (Univ.), Poland
 - Darmstadt (GSI), Germany

HADES

- Dresden (FZD), Germany
 - > Dubna (JINR), Russia
 - Frankfurt (Univ.), Germany
 - Giessen (Univ.), Germany
 - Milano (INFN, Univ.), Italy
 - München (TUM), Germany
 - Moscow (ITEP,MEPhI,RAS), Russia
 - > Nicosia (Univ.), Cyprus
 - > Orsay (IPN), France
- Rez (CAS, NPI), Czech Rep.
- Sant. de Compostela (Univ.), Spain
- Valencia (Univ.), Spain
- DCI > Coimbra (Univ.), LIP, Portugal Béatrice Ramstein

Orsay GDR, 03/10/2012

G S II

Acceptance: Full azimuth, polar angles $18^{\circ} - 85^{\circ}$ Pair acceptance ≈ 0.35

Particle identification:

RICH. Tir	no Of Elight, Pro Shower (nod	
chambers & l	Upgrade (2010))
	✓New DAQ ~20 kHz	
Trigger:	✓ new MDCs for plane 1	
1st Level: ch	√RPC θ <45°) kHz)
2nd Level: s	ingle electron trigger (~2.5 Km	z)

Momentum measurement

Magnet: $\int BdI = 0.1$ - 0.34 Tm MDC: 24 Mini Drift Chambers Leptons: $\Delta x \sim 140 \mu$ per cell, $\Delta p/p \sim 1$ -2 % $\Delta M/M \sim 2\%$ at ω peak

HADES 2nd generation dilepton spectrometer

HADES measurements in pp E=1.25 GeV, 2.2 GeV ,3.5 GeV

Exclusive meson production in hadronic channels

Inclusive dilepton production

Orsay GDR, 03/10/2012

Resonance model results: π° Dalitz Δ Dalitz + effect of lachello FF below η threshold
only 2 dilepton sources

□ π° Dalitz decay $\sigma_{\pi^{\circ}}$ =4.5 mb branching ratio $\pi^{\circ} \rightarrow \gamma e^+e^-$ 1.2 %

non resonant contribution expected to be small

 $\Box \Delta$ Dalitz decay :

branching ratio $\Delta \rightarrow \text{Ne}^+\text{e}^-$ (QED :4.2 10⁻⁵) Time-like N- Δ transition electromagnetic form factors ?

Δ Dalitz decay differential width

exact QED calculation : 3 amplitudes: e.g. Magnetic, Electric and Coulomb

Inconsistencies in the litterature, see

$$\frac{\mathrm{d}\Gamma(\Delta \to \mathrm{Ne}^+\mathrm{e}^-)}{\mathrm{d}q^2} = f\left(m_{\varDelta}, q^2\right) \left(\left| G_{M}^2(q^2) + 3 \right| G_{E}^2(q^2) + \frac{q^2}{2m_{\varDelta}^2} \left| G_{C}^2(q^2) \right| \right)$$

Krivoruchenko et al. Phys. Rev. D 65 (2001) 017502 Froehlich et al EPJA45:401-411,2010

N- Δ em transition : what do we know?

at q²=0, mainly M₁₊ (magnetic) transition

« Photon point » : q²=0 G_M(0)~3, G_E(0)~0.04

$$\overset{\mathbf{M}}{\longrightarrow} \overset{\mathbf{M}_{1+}}{\longrightarrow} \overset{\mathbf{M}_{1+}}{\longrightarrow}$$

• At finite q^2 , many recent data points from Mainz, Jlab: Programultipole analysis of π° or π^+ electroproduction (%)

I.G. Aznauryan, V.D. Burkert Prog. Part. Nucl. Phys. 67, 1 (2012)

Many models: dynamical models (Sato,Lee), EFT (Pascalutsa and Vanderhaeghen), Lattice QCD, two component quark model *Q. Wan and F. lachello, bare quarks+meson cloud* model *T. Pena and Ramalho*

Orsay GDR, 03/10/2012

What about time-like region ?

Time-like electromagnetic $N-\Delta$ transition

$$\frac{\mathrm{d}\Gamma(\Delta \to \mathrm{Ne^+e^-})}{\mathrm{d}q^2} = f\left(m_{\varDelta}, q^2\right) \left(\left| G_{M}^2(q^2) + 3 \left| G_{E}^2(q^2) + \frac{q^2}{2m_{\varDelta}^2} \left| G_{C}^2(q^2) \right| \right) \right)$$

2 options:

- take constant form factors (photon point value) HSD, UrQMD, IQMD (transport models)
- ✓ use models for form factors G_E(q²),G_M(q²),G_C(q²): VDM,eVDM, (RQMD) two component lachello model, Bare quark+meson cloud (T.Pena and G. Ramalho)

Orsay GDR, 03/10/2012

lachello two-component quark model

Collaboration with F. lachello

Wan & Iachello, int. J. Mod. Phys. A20(2005) 1846

Direct coupling

Coupling mediated by vector mesons

- ✓ unified description of baryonic form factors
- ✓ analytical derivation of form factor starting from wave functions
- \checkmark N- $\!\Delta$ transition: 4 parameters fitted on
 - elastic nucleon FF (SL+TL)
 - SL N- Δ transition G_M

✓ analytical continuation to Time-Like region

Emilie Moriniere PHD, Orsay F. Dorhmann et al, EPJA 45,401(2001)

Bare quark+meson cloud model for N- Δ transition em form factor

see G. Ramalho's talk

- ✓ VDM coupling to bare quarks + pion cloud
- ✓ 2 different models for the meson cloud (doing equally well for the Space-Like!)

Coupling to the bare quarks Coupling to the meson cloud

G.Ramalho and T. Pena Phys. ReV. D85,113014 (2012)

Orsay GDR, 03/10/2012

Effect of N- Δ transition form factor on dielectron yields

Iachello's model F. Dorhmann et al , EPJA 45,401(2001)

smaller overall effect on dilepton yield in Ramalho's model

G.Ramalho and T. Pena Phys. ReV. D85,113014 (2012)

Orsay GDR, 03/10/2012

Resonance model results: π° Dalitz Δ Dalitz + effect of lachello FF below η threshold
only 2 dilepton sources

□ π° Dalitz decay $\sigma_{\pi^{\circ}}$ =4.5 mb branching ratio $\pi^{\circ} \rightarrow \gamma e^+e^-$ 1.2 %

□ Δ Dalitz decay : branching ratio $\Delta \rightarrow \text{Ne}^+\text{e}^-$ (QED :4.2 10⁻⁵)

non resonant contribution expected to be small

Time-like N- Δ transition electromagnetic

form factors

Wan and Iachello Int. J Mod. Phys. A20 (2005) 1846 G. Ramalho and T. *Pena arxiv:* 1205.2575v1 (2012) Béatrice Ramstein

Orsay GDR, 03/10/2012

exclusive analysis : pp→ppe⁺e⁻ at 1.25 GeV using pe⁺e⁻ events

Constrains on \triangle production by hadronic channels pp \rightarrow pn π^+ , pp π^0 at E=1.25 GeV

In HADES acceptance

HADES data EPJA 48 (2012)74

Model A: original resonance model +N* angular distribution + NN FSI

Model B: taking into account the experimental ∆ angular distribution Partial Wave Analysis on-going collaboration with A. Sarantsev (Bonn-Gatchina) isospin effects in dilepton production ?
→ Comparison of pp and quasi-free pn reactions (from dp experiments)

Quasi-free « pn » dilepton spectra

Comparison to resonance model

□ π° Dalitz decay $\sigma_{\pi^{\circ}}$ = 8.6 mb branching ratio $\pi^{\circ} \rightarrow \gamma e+e-1.2$ %

 \Box \triangle Dalitz decay :

 New features with respect to pp reactions:
 ✓ participant neutron Fermi momentum (Paris potential)
 ✓ η contribution (due to Fermi motion)

∆ Dalitz (**BR ~ 4.2 10⁻⁵)** +η + effect of lachello FF

Additionnal sources with respect to pp? NN Bremsstrahlung is absent !! → Check with full One Boson Exchange calculations

NN Bremsstrahlung:

> NN π PV coupling Kaptari&Kämpfer, NPA 764 (2006) 338 Gauge invariance \rightarrow contact terms needed

New (2010) OBE calculations for pn→pne+e-

R. Shyam and U. Mosel arXiv:1006.3873

- much better agreement with data !
- sensitivity to hadronic electromagnetic structure

also studied in quasi-free pn reactions:

- pionic channels
- ➤ exclusive pn→pne⁺e⁻

 $pp \rightarrow e^+e^-X E=2.2 GeV, 3.5 GeV$

Comparison to cocktail of dilepton sources •Direct production of ρ/ω •Dalitz decay of Δ resonance (point-like)

Effect of electromagnetic form factors / Coupling of ρ to baryonic resonances ?

pp→e⁺e⁻X E=3.5 GeV GiBUU model

Effect of N- Δ form factor and of ρ coupling to baryonic resonances

J. Weil, H. van Hees, U. Mosel arxiv:1203.3557v1

Hades data, Eur.Phys.J. A48 (2012) 64

ρ mass distribution strongly modified (in pp !)

Transverse momentum distributions \rightarrow constrains for the different contributions

Fixing resonance contribution : exclusive hadronic channels in p+p @ 3.5 GeV

Many differential distributions studied for $pp\pi^0$, $pn\pi^+$, $pp\eta$, $pp\omega$

A. Dybczak, Cracow

J^{P}	Resonance	σ _{Res} [mb]	σ_{π^+} [mb]	σ_{π^0} [mb]
3/2+	$\Delta(1232)^{++}$	7.60 ± 0.92	7.60 ± 0.92	—
3/2+	$\Delta(1232)^{+}$	2.53 ± 0.31	0.85 ± 0.10	1.69 ± 0.20
1/2-	$\Delta(1620)^{++}$	0.30 ± 0.07	0.08 ± 0.02	—
1/2-	$\Delta(1620)^{+}$	0.10 ± 0.03	0.01 ± 0.01	0.02 ± 0.01
3/2-	$\Delta(1700)^{++}$	1.35 ± 0.47	0.20 ± 0.07	—
3/2-	$\Delta(1700)^{+}$	0.45 ± 0.16	0.02 ± 0.01	0.05 ± 0.02
1/2+	$\Delta(1910)^{++}$	1.15 ± 0.32	0.29 ± 0.08	—
1/2+	$\Delta(1910)^{+}$	0.38 ± 0.25	0.03 ± 0.01	0.07 ± 0.02
1/2+	$N^{*}(1440)^{+}$	1.50 ± 0.27	0.65 ± 0.12	0.39±0.07
3/2-	$N^{*}(1520)^{+}$	2.10 ± 0.34	0.77 ± 0.12	0.39 ± 0.06
1/2-	$N^{*}(1535)^{+}$	0.12 ± 0.04	0.04 ± 0.01	0.02 ± 0.01
5/2+	$N^{*}(1680)^{+}$	0.90±0.15	0.39 ± 0.06	0.20 ± 0.03

- N^*1535 constarinted by $pp \rightarrow pp\eta$ channel (Khaled Teilab Phd thesis).

Orsay GDR, 03/10/2012

Exclusive peter channel

Cross sections and angular distributions for baryonic resonances from hadronic channel analysis Direct production of ρ,η,ω with cross sections from hadronic analysis (of $\eta/\omega \rightarrow \pi + \pi^{-}\pi^{0}$) and $\sigma_{\rho} = 1/2\sigma_{\omega}$ Constant form factors (taken at q²=0) *M. Zetenyi and G. Wolf Heavy Ion Phys.* 17 (2003) 27

Missing yield related to off-shell coupling of baryonic resonances to vector mesons

More results in pp reactions...

 $\checkmark \pi^0$ and η Dalitz decay reconstruction in pp reactions

✓ Exclusive dilepton production in pn \rightarrow pne⁺e⁻ , pn \rightarrow pde⁺e⁻

✓ Strange channels: Σ(1385),Λ(1405),...
 Phys.Rev. C85 (2012) 035203
 Nucl.Phys. A881 (2012) 178-186

✓ Partial wave analysis for pp→ NN π and pp → pK Λ : collaboration with A. Sarantsev (Bonn-Gatchina)

✓ 2π production in pp→pp $\pi^+\pi^-$, pn→pn $\pi^+\pi^-$, pn →d $\pi^+\pi^-$ Γ(N*→Δ π)/ Γ(N*→N σ) and sensitivity to N* and double Δ production mechanisms

Perspectives of pion beam experiments

Orsay GDR, 03/10/2012

GSI pion beam

Expected Intensities for Space Charge Limit and 100% extraction efficiency I ~ 10⁶/s

Pion momentum 0.6 GeV/c

Orsay GDR, 03/10/2012

Béatrice Ramstein

29

Motivations of πN experiments with HADES: Dilepton channels

- well-known production mechanism
- fixed resonance mass M_R=sqrt(s)
- exclusive $\pi p \rightarrow n e^+e^-$ channels (η contribution can be rejected)

Simple resonance model:

Incoherent sum of Dalitz decay of different baryonic resonances with constant form factors

- + meson contribution
- H. Kuc PhD Orsay/Cracovie

(omega threshold p_{th}=1.03 GeV/c)

Efects of electromagnetic form factors ?

Important interference effects expected between I=0 (ω) and I=1 (ρ) channels Linked to coupling to baryonic resonances

Calculations based on hadronic couplings M. Lutz, B. Friman, M. Soyeur, NPA 713 (2003) 9 Titov and Kämpfer EPJA 12 (2001) 217 Very new calculation based on VDM transition form factors by Zetenyi and Wolf arXiv:1208.5671v1 [nucl-th]

éatriceéarderafisiein

31

ρ/ω production in $\pi^-p \rightarrow e^+e^-n$ reaction

p=1.3 GeV/c √s=1.85 GeV/c

In HADES acceptance after missing mass cut $\pi^{-}p \rightarrow e^{+}e^{-}n$ 1 week beam time

Reference for cold matter effect : dilepton production in π -A reactions

More to be done with the π beam...

- ✓ white book on physics program being written.....
- $\checkmark \pi^{-}p \rightarrow N\pi \pi$: improve the very poor existing data base

needed for baryonic resonance characterization in modern Partial Wave Analysis

- $\checkmark \quad \pi^{-} p \to \omega n$
- ✓ strangeness channels : $\pi^- p \to K\Sigma$, $\pi^- p \to \phi N$, $\pi^- + p \to \Lambda K^0$ $\Lambda(1405)$ structure issues:
- ✓ $\Lambda(1405) \rightarrow K^{-}p$ and $\Lambda(1405) \rightarrow \pi\Sigma(1194)$ B. Saghai (Saclay), E. Oset (Valencia)
- \checkmark π A: medium effects in dilepton and strangeness production
- ✓ technical issues: in beam, position sensitive detectors being developped in Munich

Orsay GDR, 03/10/2012

Conclusions: HADES experiments

Elementary reaction program

- reference for medium effects
- Selective study of dilepton processes, cross section measurements
- Time-like electromagnetic structure of baryonic resonances/coupling to vector mesons
- hadronic channels (Partial Wave analysis)

perspectives of pion beam experiments (\rightarrow 2013)

- Cold nuclear matter : π A dilepton production
- Dilepton channels in $\pi N \rightarrow$ Unique chance to study Time-Like electromagnetic structure of higher lying resonances (complementary to pion electroproduction)
- two pion production, new data (differential spectra) highly needed for Partial wave Analysis → baryonic resonance properties
- strangeness channels Σ (1385), Λ (1405),...
- Electromagnetic calorimeter → photon and neutral meson detection (radiative decays, eta production, strangeness channels)

Before HADES moves to FAIR !

Thank you for your attention

Orsay GDR, 03/10/2012

Béatriceéatrice Ramstein

$\pi p \rightarrow N\pi \pi$

A paradoxical situation:

 modern Partial Wave Analysis recently allows more powerful analysis

• The low statistics old data are not available anymore

- Most π π decay branching ratios for baryonic resonances in PDG are based on
 D.M. Manley, R. Arndt, Y. Goradia, V.Teplitz, Phys Rev D 30, 904 (1984)
- More recent data (TRIUMF,LAMPF,BNL) do not cover the region between 1.32 and 1.9 GeV
- \rightarrow high statistics differential distributions are needed

and can be provided by HADES !

$\pi p \rightarrow N\pi \pi$

Regions of interest:/open issues:

N(1440) P₁₁ Branching ratios to $\pi\Delta$ and $(\pi \pi)_s$ N

N(1520) D₁₃ Branching ratios to $\pi\Delta$ and ρ N, important for ρ in-medium calculations

N(1710) P₁₁ Not seen in the latest PWA analysis BR(2π) =40 to 90 % (PDG 2010)

Orsay GDR, 03/10/2012

Beam Line Setup (sketch)

Strangeness channels with pion beams

• In π -A reactions:

 $\phi \rightarrow K^+K^-$ in-medium modifications

Kaons in medium:K[±]

KN potential

• Λ (1405) in $\pi^- p \rightarrow K^0 \Lambda(1405)$ • $\pi^- + p \rightarrow \Lambda K^0$ • $p \pi \rightarrow \pi^+ \pi^-$

C.J. Batty, E. Friedmann, A. Gal, Nucl. Rep. 287 (1997) 385.
K. Tsushima, K. Saito, A.W. Thomas, S.V. Wright, Phys. Lett. B 429 (1998) 239.
G.E. Brown and M. Rho, Nucl. Phys. A 596 (1996) 503.

```
\pi +Σ<sup>-</sup> (1194) or \pi-Σ<sup>+</sup> (1194)
```

 \rightarrow sensitive test for the resonance contribution

Orsay GDR, 03/10/2012

pp/pn as a reference to in-medium dilepton excess :

Béatrice Rams

Orsay GDR, 03/10/2012

pp as a reference to cold nuclear matter effects:

Cold nuclear matter effect:

• excess below the vector meson poles ρ meson modifications ?

Or secondary pion induced reactions $\pi+N \rightarrow \Delta (1720,..)(N^*(1520),..) \rightarrow Ne+e-?$

can be constrained by pp analysis !

In-medium Vector Meson spectroscopy

The advent of high-resolution & high-statistics experiments:

- NA60 at the CERN SPS: In+In → µ⁺µ⁻
- HADES at GSI: p+p, p+A, A+A → e⁺e⁻
- E325 at the KEK PS: p+Cu → e⁺e⁻
- CLAS at JLAB: γ+A → e⁺e⁻
- CB/TAPS at ELSA: $\gamma + A \rightarrow \omega \rightarrow \pi^{0}\gamma \rightarrow 3\gamma$
- LEPS at SPring-8: $\gamma + A \rightarrow \phi \rightarrow K^*K^-$
- ANKE at COSY: $p+A \rightarrow \phi \rightarrow K^+K^-$

And, of course

- PHENIX & STAR at RHIC
- ALICE, ATLAS & CMS at LHC

Have to deal with final state interactions of VM decay products

QNP2012 Palaiseau, France

R. Holzmann, GSI

11

Orsav GDR

first HADES data put an end to the DLS puzzle

- 1997: transport models failed to explain DiLeptonSpectrometer (Berkeley) data
- 2007: DLS and HADES agree and are compatible with new transport model calculations *G.Agakichiev et al. Phys. Lett. B* 663,43 (2008)

Improved theoretical treatment of elementary dilepton sources

Analysis steps : one example

Forward Wall (np selection):

- 1. Mult > 0
- 2. search for particle with 1.6 GeV < p < 2.6 GeV

<u>(e+,e-) pair cuts</u>:

- 1. track and ring quality
- 2. identification
- 3. background rejection cuts
- 4. opening angle $> 9^{\circ}$.

Combinatorial background: like sign pairs

$$N^{CB}=2sqrt(N^{++}N^{-})$$

efficiency corrections:

normalisation by elastic scattering measurement (syst.error ~ 11 %)

two component model: fit of parameters to existing data

elastic nucleon form factors 4 parameters a^2 , γ , g_8 , v

N-∆ magnetic transition form factors 2 additionnal parameters: a',g₁₀

Orsay GDR, 03/10/2

lachello's two-component model:

Space-like N- Δ transition magnetic form factor

Proton magnetic moment $\mu_p=2.793$

Intrinsic form factor

$$g(k^2) = \frac{1}{(1+a^2k^2)^2}$$

Direct coupling

$$G_M^{N-\Delta} = \mu_p \left(\frac{4}{3\sqrt{2}}\right) \sqrt{\frac{M}{M_{\Delta}}} \left(\frac{k}{k_{CM}}\right) g\left(k^2\right) \left[\beta' + \beta_\rho \frac{m_\rho^2}{m_\rho^2 + Q^2}\right]$$

$$\vec{k} = \vec{p}_{\Delta} - \vec{p}_{N}$$

Breit Frame:

$$k^{2} = Q^{2} + \frac{\left(M_{\Delta}^{2} - M^{2}\right)^{2}}{2\left(M_{\Delta}^{2} + M^{2}\right) + Q^{2}}$$
$$k^{2} \approx Q^{2}$$

Center of mass:

$$k_{CM}^{2} = Q^{2} + \frac{\left(M_{\Delta}^{2} - M^{2} - Q^{2}\right)^{2}}{4M_{\Delta}^{2}}$$

 $\rho \text{ width } \frac{m_{\rho}^2}{m_{\rho}^2 + Q^2} \rightarrow \frac{m_{\rho}^2 + 8\Gamma_{\rho}m_{\pi}/\pi}{m_{\rho}^2 + Q^2 + (4m_{\pi}^2 + Q^2)\Gamma_{\rho}\alpha(Q^2)/m_{\pi}}$

$$\alpha(Q^{2}) = \frac{2}{\pi} \left[\frac{4m_{\pi}^{2} + Q^{2}}{Q^{2}} \right]^{1/2} \ln \left(\frac{\sqrt{4m_{\pi}^{2} + Q^{2}} + \sqrt{Q^{2}}}{2m_{\pi}} \right)$$

lachello's two-component model for baryonic form factors

Wan & Iachello, int. J. Mod. Phys. A20(2005) 1846]

✓ Unified description of all baryonic transition form factors

✓ two-component: Direct coupling to quarks + coupling mediated by vector mesons

✓ analytic continuation to time-like region

✓ Version of model with SUsf(6) symmetry

visitification » of previous phenomenological parametrisations

✓ F. Iachello, A.D. Jackson and A. Lande Phys. Lett. 43B 191 (1973)
✓ F. Iachello EPJA 19(2004) 29 fits to more recent data

Orsay GDR, 03/10/2012

analytic continuation to Time-Like region

1) <u>Kinematical</u> singularity in Breit Frame kinematics in Time-Like region →use approximate SL form factors

2) <u>ρ coupling term:</u>

ρ width for Time-Like transition:	→ essential to remove singularity at q^2 = → induces a large negative phase → real for $q^2 < 4 m_{\pi}^2$	= m _p ²
Orsav GDR. 03/10/2012	Béatrice Ramstein	48

analytic continuation to Time-Like region:

Time-Like N- Δ form factor in two component model : results

Vector meson modifications:

see e.g. Leupold ,Metag,Mosel Int. J. of Mod. Phys. E19 (2010) 147 for a recent review

Technical layout of HADE

HADES cave

inner MDC

RICH readout

Orsay GDR, 03/10/2012

Béatriceéatrice Ratristein

Lepton Identification with HADES

RICH pattern

Drift Chamber: Track reconstruction

Pre-Shower condition

momentum % velocity

momentum · charge

Data base entries from HADES measurements

Using both leptonic and hadronic channels

 ρ/ω inclusive cross sections pp \rightarrow pppX and pp \rightarrow pp ω X E=3.5 GeV

<u>η inclusive/exclusive cross sections</u>

Orsay GDR, 03/10/2012

pp E=2.2 and 3.5 GeV

PDG Entry 2012:

BR(η->e⁺e⁻) < (4.9 + 0.7 - 1.2)x10⁻⁶ with 90% CL

atrice Ramstein

pp E=3.5 GeV

