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Abstract

Nucleon antinucleon annihilation into a near backward (or forward) produced meson and a

high invariant mass lepton pair admits a factorized description in terms of antinucleon (or nu-

cleon) distribution amplitudes (DAs) and nucleon to meson (or antinucleon to meson) transition

distribution amplitudes (TDAs). We estimate the cross section of backward (and forward) pion

and η-meson production in association with a high invariant mass lepton pair for the kinemat-

ical conditions of GSI-FAIR. The cross sections are found to be large enough to be measured

with the P̄ANDA detector. Interesting phenomenological applications of the approach are thus

expected.
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Factorization

the u-channel longitudinal momentum transfer, is fixed; |u| is small as compared to

Q2 and W 2. The meson M is produced in the near backward direction in the N̄N

CMS. We refer to this kinematics as the backward, or the u-channel factorization

regime.

2. Analogously, the t-channel collinear factorization theorem presented on the right

panel of Fig. 1 is valid once W 2 and Q2 are large; the corresponding skewness

variable ξt (A11) is fixed; |t| is small as compared to Q2 and W 2. The meson M is

produced in the near forward direction in N̄N CMS and we refer to this kinematics

as the forward, or the t-channel factorization regime.
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FIG. 1: Two possibilities for collinear factorization of the annihilation process

NN̄ → γ∗(q)M(pM). Left panel: backward kinematics (|u| ∼ 0) . Right panel:

forward kinematics (|t| ∼ 0). N̄(N) DA stands for the distribution amplitude of

antinucleon (nucleon); MN(MN̄) TDA stands for the transition distribution amplitude

from a nucleon (antinucleon) to a meson; CF and CF’ denote hard subprocess

amplitudes (coefficient functions).

The factorization theorems for the reaction (1) presented on Fig. 1 involve two kinds

of non-perturbative objects: the conventional antibaryon (or baryon) distribution ampli-

tudes (DAs) and the baryon to meson (or antibaryon to meson) transition distribution

amplitudes (TDAs). The baryon to meson (antibaryon to meson) TDAs are defined

through baryon (antibaryon)-meson matrix elements of the non-local three quark (anti-
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our 2 - component model for TDA

ë A spectral representation with input fixed at ξ = 1 through soft

pion theorem

and deskewing (i.e. ξ →6= 1 ) through an ansatz

ë A nucleon pole exchange in the u−channel

These two components are additive and there is no double counting

(one may also add a ∆−pole exchange but small contribution )

ë A model driven by a nucleon DA parametrization

various existing DAs : CZ, COZ, KS, GS, BLW ...

NEW ! ( LPS-2007 paper = only soft limit)



Nucleon exchange through a TDA

Nucleon pole contribution

u-channel nucleon exchange is complementary to the spectral representation
(D-term like contributions) non-zero in the ERBL-like region 0 ≤ xi ≤ 2ξ .

The effective Hamiltonian for πN̄N :

Heff = igπNN N̄α(σa)α
βγ5Nβπa

�πa(pπ)| �Oα β γ
ρτχ (λ1n, λ2n, λ3n)|Nι(p1, s1)�

=
�

sp

�0| �Oαβγ
ρτχ (λ1n, λ2n, λ3n)|Nκ(−∆, sp)�(σa)κ

ι

igπNN Ū�(−∆, sp)

∆2 −M2

�
γ5U(p1, s1)

�
�

.

After decomposition over the Dirac structures:
�
V1, A1, T1

�(πN)
(x1, x2, x3)

= ΘERBL(x1, x2, x3)× MfπgπNN

∆2 −M2

1

(2ξ)

�
V p, Ap, T p

� �
x1

2ξ
,
x2

2ξ
,
x3

2ξ

�
;

Composite model for πN TDAs: spectral representation with input at ξ = 1
plus D-term



Remarks

Nucleon pole dominant almost everywhere

Confidential : seems to give right order of magnitude for

TDAs at JLab

e N → e′ N ′ π0



Forward and Backward Peaks

the u-channel factorization mechanism with the change (C1) (see discussion of App. B 3).

The COZ solution for the nucleon DAs is used here as numerical input. The forward

and backward peaks produced within the suggested factorization mechanism are clearly

visible. They look perfectly symmetric in the CMS frame. However, it is worth mentioning

that when boosting from the CMS to the LAB frame (which corresponds to the nucleon

N at rest in the P̄ANDA setup) the forward peak is narrowed and the backward peak is

broadened (see Fig. 3).
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FIG. 6: Differential cross section dσ/dQ2d cos θ∗π for p̄p → #+#−π0 as a function of cos θ∗π

for W 2 = 5GeV2 and Q2 = 2.5GeV2. Forward and backward peaks are clearly visible.

COZ solution for the nucleon DAs is used as the numerical input. Dotted region denotes

scattering over large angles in which the present factorization description does not apply.

2. Results for η production

In an analogous way, we may consider near backward (and forward) η meson production

in association with a lepton pair

N(pp) + N̄(pp̄)→ γ∗(q) + η(pη)→ #+(p#+) + #−(p#−) + η(pη). (25)

The nucleon pole model for ηN TDAs is similar to that for πN TDAs (4) with the

obvious change of phenomenological coupling gπNN → gηNN . Estimates of gπNN and

gηNN phenomenological couplings taken from Table 9.1 of Ref. [27] give
g2

ηNN

g2
πNN

∼ 0.3. The

formulas for the p̄p → γ∗η → #+#−η are obtained from the relevant formulas of Sec. 3

13

in Center of Mass frame !



From Center of Mass to Lab frame
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FIG. 3: The solid lines illustrate the dependence of the CMS scattering angles θ∗π for

the u-channel (left panel) and the t-channel (right panel) factorization regimes for the

reaction (7) as functions of ∆u
T

2
min and ∆t

T
2
min respectively. The dashed lines illustrate the

dependence of the LAB frame scattering angles θLAB
π for the two factorization regimes as

the function of ∆u
T

2
min and ∆t

T
2
min respectively. Note that the forward peak is narrowed

and the backward peak is broadened due to the effect of the boost from the CMS to the

LAB frame which corresponds to the nucleon N at rest in the P̄ANDA set up.

4. PSEUDOSCALAR MESON PRODUCTION IN ASSOCIATION WITH A

HIGH INVARIANT MASS LEPTON PAIR IN N̄N ANNIHILATION

1. Results for π0 and π− production

On Figs. 4 and 5, we show our model predictions for the integrated cross section

dσ̄

dQ2
(∆2

T min) ≡
∫ umax

umin

du

∫
dθ"

dσ

dudQ2d cos θ"
(24)

of p̄p → #+#−π0 and of of p̄n → #+#−π− as the function of Q2, for several values of W 2

(W 2 = 5, 10 and 20 GeV2 ) with the cut at ∆2
T min = −0.2 GeV2. As phenomenological

input, our model for πN TDAs requires the nucleon DAs V p, Ap, T p at the normalization

scale µ2 ∼ Q2. A vast literature exists on the phenomenological solutions for nucleon

DAs (see e.g. [21, 22] for the discussion). In order to quantify the sensitivity of our

model prediction on the input nucleon DAs, we show the cross section estimates for

the case of several phenomenological solutions fitting the nucleon electromagnetic form

10

Forward peak narrowed ; Backward peak broadened



input dependence

Cross section ( for electroproduction ) calculated from the modeled
TDA depends much on the DA model

B.Pire, CPhT, Polytechnique PANDA-2012 12



p̄p→ e+e−π0

factor: Chernyak-Ogloblin-Zhitnitsky (COZ) [23]4 (dashed line with long dashes), King

and Sachrajda (KS) [24]5 (solid line), Braun-Lenz-Wittmann (BLW NLO) model of [22]6

(dashed line with medium dashes) and NNLO modification of BLW model suggested

in Ref. [25]7 (dashed line with short dashes). Within the considered parameter range,

these cross sections seem to be large enough for a detailed investigation to be carried at

PANDA@GSI-FAIR.
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FIG. 4: Integrated cross section dσ̄/dQ2 for p̄p→ "+"−π0 as a function of Q2 for different

values of W 2 = 5, 10 and 20 GeV2 for various phenomenological nucleon DA solutions:

COZ (long dashes); KS (solid line); BLW NLO (medium dashes) and NNLO modifica-

tion [25] of BLW (short dashes).

It is worth mentioning that the cross section which we obtained with the BLW NLO

model input is much smaller than for the case of models including next-to-next-to-leading

4 Eq. (13) of Ref. [23].
5 Eq. (4.6) of Ref. [24]
6 See Appendix B of Ref. [22].
7 See Table I of Ref. [25].
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W2 = 5,10GeV 2

W2 = 20GeV 2

depends much on DA input in TDA model



p̄n→ e+e−π−

conformal spin contribution (such as COZ, KS and NNLO modification of BLW). In fact,

the pp̄→ π0γ∗ and np̄ → π−γ∗ amplitudes turn to be zero at the leading twist accuracy

once we employ the asymptotic form of the nucleon DA as input. This zero is reminiscent

of the zero for the proton electromagnetic form factor with the asymptotic DA [8]. The

cross section thus turns to be small for the BLW NLO as well as for the Bolz-Kroll (BK)

[26] input nucleon DAs which are known to be rather close to the asymptotic form of the

nucleon DA.
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FIG. 5: Integrated cross section dσ̄/dQ2 for p̄n → $+$−π− as a function of Q2, for

different values of W 2 = 5, 10 and 20 GeV2 for various phenomenological nucleon DA

solutions: COZ (long dashes); KS (solid line); BLW NLO (medium dashes) and NNLO

modification [25] of BLW (short dashes).

On Fig. 6, we show the differential cross section dσ/dQ2d cos θ∗π for p̄p → $+$−π0 as

a function of cos θ∗π, for W 2 = 5 GeV2 and Q2 = 2.5 GeV2, both for the near forward

and backward factorization regimes. As a consequence of C-invariance, the cross section

of (1) within the t-channel factorization mechanism can be obtained from that within

12

W2 = 5,10GeV 2

W2 = 20GeV 2

Isospin factor doubles the cross section



η production

the u-channel factorization mechanism with the change (C1) (see discussion of App. B 3).

The COZ solution for the nucleon DAs is used here as numerical input. The forward

and backward peaks produced within the suggested factorization mechanism are clearly

visible. They look perfectly symmetric in the CMS frame. However, it is worth mentioning

that when boosting from the CMS to the LAB frame (which corresponds to the nucleon

N at rest in the P̄ANDA setup) the forward peak is narrowed and the backward peak is

broadened (see Fig. 3).
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FIG. 6: Differential cross section dσ/dQ2d cos θ∗π for p̄p → #+#−π0 as a function of cos θ∗π

for W 2 = 5GeV2 and Q2 = 2.5GeV2. Forward and backward peaks are clearly visible.

COZ solution for the nucleon DAs is used as the numerical input. Dotted region denotes

scattering over large angles in which the present factorization description does not apply.

2. Results for η production

In an analogous way, we may consider near backward (and forward) η meson production

in association with a lepton pair

N(pp) + N̄(pp̄)→ γ∗(q) + η(pη)→ #+(p#+) + #−(p#−) + η(pη). (25)

The nucleon pole model for ηN TDAs is similar to that for πN TDAs (4) with the

obvious change of phenomenological coupling gπNN → gηNN . Estimates of gπNN and

gηNN phenomenological couplings taken from Table 9.1 of Ref. [27] give
g2

ηNN

g2
πNN

∼ 0.3. The

formulas for the p̄p → γ∗η → #+#−η are obtained from the relevant formulas of Sec. 3

13

with the obvious change of values of the masses and the couplings. On Fig. 7, we show

the results for the integrated cross section dσint/dQ2 for p̄p → "+"−η as a function of

Q2, for different W 2 = 5, 10 and 20 GeV2 for various phenomenological nucleon DA

solutions: COZ (long dashes); KS (solid line); BLW NLO (medium dashes) and NNLO

modification [25] of BLW model (short dashes).
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FIG. 7: Integrated cross section dσ̄/dQ2 for p̄p→ "+"−η as a function of Q2 for different

values of W 2 = 5, 10 and 20 GeV2 for various phenomenological nucleon DA solutions:

COZ (long dashes); KS (solid line); BLW NLO (medium dashes) and NNLO modifica-

tion [25] of BLW (short dashes).

5. CONCLUSIONS

In this work, we have estimated the cross section for pseudoscalar meson production

in association with a high invariant mass lepton pair in nucleon antinucleon annihilation.

We have performed this analysis in the framework of the QCD collinear factorization. We

used the model for the TDAs which was introduced recently in [13] and for which the

14

Smaller cross section ; less background ?



the PANDA@FAIR processes

2

tude and the TDAs, defined from the Fourier transform1

of a matrix element of a three-quark-light-cone operator
between a proton and a meson state. We have shown that
these TDAs obey QCD evolution equations, which follow
from the renormalisation-group equation of the three-
quark operator. Their Q2 dependence is thus completely
under control.

FIG. 1: γ!π pair production in pp̄ exclusive annihilation in
the proton rest frame (laboratory).

k1 k3

p(pp) π(pπ)

Mh

"1
DA

p̄(pp̄)
γ$(q)

"3

TDA

FIG. 2: The factorisation of the annihilation process pp̄ →

γ!π into antiproton-distribution amplitudes (DA), the hard-
subprocess amplitude (Mh) and proton → pion transition dis-
tribution amplitudes (TDA) .

The momenta of the process pp̄ → γ!π are defined as
shown in Fig. 1 and Fig. 2. The z-axis is chosen along
the colliding proton and antiproton and the x − z plane
is identified with the collision or hadronic plane. Then,
we define the light-cone vectors p and n (p2=n2=0) such
that 2 p.n = 1, as well as P = 1

2 (pp + pπ), ∆ = pπ − pp

and its transverse component ∆T (∆T .∆T = ∆2
T < 0),

which we choose to be along the y-axis. From those, we
define ξ in an usual way as ξ = − ∆.n

2P.n .
We can then express the momenta of the particles

through their Sudakov decomposition and we have:

pp =(1 + ξ)p +
M2

1 + ξ
n,

pp̄ =
2M2(1 + ξ)

W 2 − 2M2 + W
√

W 2 − 4M2
p+

W 2 − 2M2 + W
√

W 2 − 4M2

2(1 + ξ)
n

pπ =(1 − ξ)p +
m2

π − ∆2
T

1 − ξ
n + ∆T ,

q $2ξp +
M2

W 2
(1 + ξ) +

[W 2 + M2

1 + ξ
− m2

π − ∆2
T

1 − ξ

]

n − ∆T ,

to be checked

∆ = − 2ξp +
[m2

π − ∆2
T

1 − ξ
− M2

1 + ξ

]

n + ∆T

(5)

We then have (for ξ %= 1 and neglecting ∆2
T as well as

m2
π)

Q2 $ 2ξ
W 2

1 + ξ
or W 2 $ (1 + ξ)Q2

2ξ
(6)

which gives

ξ $ Q2

2W 2 − Q2
. (7)

In the proton target mode, the maximal reachable
value for W 2 at GSI will be (5.46)2 $ 30 GeV2 (for
Ep̄ = 15 GeV). Neglecting the pion mass, the highest
invariant mass of the photon could be Q2

max = 30 GeV2.
For Q2 > 20 GeV2 and W 2 $ 30 GeV2, ξ is large than
1/2.

Finally, we have :

∆2
T =

1 − ξ

1 + ξ

(

t − 2ξ
[ M2

1 + ξ
− m2

π

1 − ξ

]
)

. (8)

In Ref. [2], we have defined the leading-twist proton to
pion P → π transition distribution amplitudes from the
Fourier transform of the matrix element

〈π| εijkqi
α(z1n) [z1; z0] q

j
β(z2n) [z2; z0] q

k
γ(z3n) [z3; z0] |P 〉.

(9)

The brackets [zi; z0] in Eq. (9) account for the insertion
of a path-ordered gluonic exponential along the straight
line connecting an arbitrary initial point z0n and a final
one zin:

[zi; z0] ≡ P exp

[

ig

∫ 1

0
dt (zi − z0)nµAµ(n[tzi + (1 − t)z0])

]

(10)

which provide the QCD-gauge invariance for such non-
local operator and equal unity in a light-like (axial)
gauge.

J/ψ

p̄

c

c̄

π0p

N̄N → πγ∗→ πe+e− N̄N → πψ → πe+e−

but also

N̄N → ηγ∗→ ηe+e− , N̄N → ππγ∗→ ππe+e− , ...

B.Pire, CPhT, Polytechnique PANDA-2012 2



Soft pion limit

Soft pion theorem for πN GDA

Soft pion theorem Pobylitsa, Polyakov and Strikman’01 (Q2 � Λ3
QCD/m):

�0| �Oαβγ
ρτχ (z1, z2, z3)|πaNι� = − i

fπ
�0|

�
�Qa

5 , �Oαβγ
ρτχ (z1, z2, z3)

�
|Nι� ,

with
�

�Qa
5 , Ψα

η

�
= − 1

2
(σa)α

δγ
5
ητΨδ

τ ;

At the pion threshold (ξ = 1, ∆2 = M2 in the chiral limit) soft pion theorem
fixes πN TDAs/GDAs in terms of nucleon DAs V p, Ap, T p (see V. Braun,
D. Ivanov, A.Lenz, A.Peters’08).

E.g. soft pion theorem for uud proton to π0 TDAs:

{V pπ0

1 , Apπ0

1 }(x1, x2, x3, ξ = 1, ∆2 = M2) = −1

8
{V p, Ap}(x1

2
,
x2

2
,
x3

2
) ;

T pπ0

1 (x1, x2, x3, ξ = 1, ∆2 = M2) =
3

8
T p(

x1

2
,
x2

2
,
x3

2
)

{V pπ0

2 , Apπ0

2 , T pπ0

2 } = −1

2
{V pπ0

1 , Apπ0

1 , T pπ0

1 } T pπ0

3,4 = 0 ;

C.f. soft pion theorems for isoscalar and isovector pion GPDs:

HI=0(x, ξ = 1) = 0; HI=1(x, ξ = 1) = φπ(x)

B.Pire, CPhT, Polytechnique PANDA-2012 7



A skewing ansatz

“Skewing” ξ = 1 limit for πN TDAs

After suitable change of spectral variables (κ = α3 + β3, θ = α1+β1−α2−β2
2

,

µ = α3 − β3, λ = α1−β1−α2+β2
2

) and introduction of “quark-diquark” coordinates

w = x3 − ξ; v = x1−x2
2

:

H(w, v, ξ) =

� 1

−1
dκ

� 1−κ
2

− 1−κ
2

dθ

� 1

−1
dµi

� 1−µ
2

− 1−µ
2

dλ δ(w − κ− µ

2
(1− ξ)− κξ)

×δ
�

v − θ − λ
2

(1− ξ)− θξ
�

F (κ, θ, µ, λ)

A factorized Ansatz for quadruple distribution Fi:

F (κ, θ, µ, λ) = V (κ, θ) h(µ, λ)

with the profile h(µ, λ) normalized as
�

dµ
�

dλh(µ, λ) = 1.

Since H(w, v, ξ = 1) = V (w, v) for V one may use input from the soft pion
theorem

A possible choice for the profile: h(µ, λ) = 15
16

(1 + µ)((1− µ)2 − 4λ2);
vanishes at the borders of the definition domain.

B.Pire, CPhT, Polytechnique PANDA-2012 8



From ξ = 0 to ξ = 1
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