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Generalities about lattice models

@ Linear operator H on Hilbert space /7 = /1 ®---® ] .

@® Spaces ¥; can be finite or infinite dimensional. Often isomophic ¥; ~ ¥5.

® Basis of operators O(®) on % ~~> operators O(") ide---®ideo@ eid---oid.
S——— ~———
(—1times N-(-1

Often H has nearest neighbor coupling structure

Z f(O] (e Oj(ﬁ)l) + bdry terms
j=

® Example The periodic XXZ spin-1/2 chain:

L
_ X X y .y z —
Hxxz = Jn;l {(’r"”-rwrl +opon g+ COS(()(rn(rn+l + h(r,,} . OpiL =E0p

» Local spaces ¥ ~ ¥, ~ C? and local operators

(rX:(l O),(ry:(? B’),(}'Z:(é _01) h = magnetic field.
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What one would like to know?

i) Find the Eigenstates and Eigenvectors of H| W) = Eg|Wg);

i) Compute in closed form and characterize the correlation functions
(W, 108 ol gy

@ Characterize intrinsic & response properties of a system.

@ Appear in perturbative expansions: H < H + Hper -
iii) Characterize the behaviour at finite temperatures

(0;‘7“”)0(1”1) yro= tr[e’ 7 O%Y’”)O(l‘”)]/tr[e’ 7 ]

® Program i) — iii) especially interesting when L — +co.
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Low-lying excitations in 1D quantum Hamiltonians

* '84 Cardy Central charge ~» finite-size corrections to ground state energy ;

2 VE

0

Vg 1
6L L2

Ecs. =Le-c— +0O —) and Eex — Ecs. =

* Bethe Ansatz ~» spectrum given by solutions to algebraic equations
. N N
FH(4) = Hl S(4j, k) and E(y)) = 2180(/1/)
a= =

~» Extract the large N, L behavior.

* Methods for computing finite-size corrections from Bethe Ansatz
'87-'95  (Batchelor, Destri, DeVega, Klumper, Pearce, Woynarowich, Wehner, Zittartz) ;

@ Proof of Cardy’s predictions for the conformal structure of spectrum:
m

c=1 6:(Z)Z+(Zn2)2+n3 and linear integral equations~» vg , Z
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Typical long-distance behavior of correlators

T>0 exponential decay at long-distance is expected:
(OmO1)T = (01)% + A exp(-m/é) + ...

® T=0 Model becomes critical if gapless spectrum —— algebraic decay

_ (G.S.10m01lG.S.) 2 C1 C
(OmO1)71=0 = TGS G35y Oy + ey + s cos (2mpg) + ......
o Prediction of critical exponents «;, correlation lengths ¢ by approximate methods

@ Correspondence with a Conformal Field Theory ('70 Polyakov , '84 Cardy )
@ Correspondence with Luttinger liquid (75 Luther, Peschel ,’'81 Haldane )
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Predictions for the critical exponents

e Correlators in a two-dimensional CFT on a strip of width L

( /L

_ _ - 204 /L 20— B .
(9020 2000(22.22)) = | Gy, - 22)/L]) (sinh[n(?l —Ez)/L]) fa = Xa Vel

o Excitation energy from form factor expansion

<¢(21,21)¢(22~22)> = WZ [{0¢(0,0)| Wex Y2e (1-t2)(Eex—Eg.s.)~i(x1-%2)(Pe—Pg s.)

2 2
Ee—Egs. = TVF(A+ + AD) and P -Pgs. = T(A+ -A)

@ '70 Polyakov Conformal invariance of correlators at large distances ;
@ '84 Cardy Central charge ~» finite-size corrections to ground state energy ;

Low-lying excitations < conformal dimensions A.  ~»  asymptotics
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Asymptotic behavior of correlation functions

@ The non-linear Schrédinger model

L
H=[{a,W (y) oW (y) + ¥ () W (1) W (y) W (y) - hW' (y) W ()} dy
0

L: length of circle, ¢ > 0 coupling constant (repulsive regime), h > 0 chemical potential.
@ NLSM = quantum critical model at T = OK

@ low-lying excitations from large L analysis of Bethe Ansatz equations

:

¢ Density-density correlator j (x) = W7 (x) W (x) :

(G.S.i(x)j(O)IGs)y . .. L2 L G cos (2xpr)
(G.S.|G.S) =({(x)j(0)) = ((0)* + )] + CZXZT

¢ Reduced density matrix

(W (x) W' (0)) = Cax T2 4 ..
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Turining the time on

4 Predictions for the long-distance/long-time behavior at T = OK restricted to x > vgt:

X2 + V2t cos (2xpr)

’

(e -vze) (e vpe)”

(i(x1)j(0,0)) = (j (0,00 + C;
= Consistency problem with time-dependent asymptotics

2 242
X2 + V2t

m(l—&-o(l)) = X—12(1+0(1)) when x > vgt
X —VF

e What happens when x ~ vgt ?
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The edge exponents for Fourier transforms

¢ Experiments measure Fourier transforms

S (k,w) = [ @R (x,1)j(0,0))dxdt

R2

~» DSF measured by Fourier sampling of time of flight images or Bragg spectroscopy.

* '06 (Caux, Calabrese) Density structure factor in NLSM
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Predictions for the behavior near the edges

* '67 (Mahan), '67 (Noziére, De Dominicus) Arguments for a power-law behavior near edges.

* '08 (Glazman, Imambekov) Non-linear Luttinger liquid ~> predictions for edge exponents.

S(k,w) = (k) = (w-en(k)) - [w—-en(k)]” 9>0

* '09 (Affleck, Pereira, White) X-ray edge-type model ~» predictions for edge exponents.
* '10 (Caux, Glazman, Imambekov, Shashi) Predictions for o7 (k) (NLSM);

e Can these predictions be confirmed by an approach solely on the microscopic model?
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The XXZ spin-1/2 chain

L
Hyxz = J Z:L {o’%@'ﬁrl + (T%(rﬁﬂ + Cos(()crﬁcrfprl + h(rf,} . OpiL =0
n=

* Coordinate Bethe Ansatz at cos({) = 1 ('31 Bethe):

N
Eigenvectors [A1,...,An) = X C(ny (A1.....An) [ {N}) & Eigenvalues E = Y € (4a)
{n} a=1

sinh(4; + iz/2)\" N sinh(dj — A + i
Parameterized by sols to Bethe equations M = M
sinh(4; — i/2) a=1 Sinh(j — Ak — i)
#

* Further developments ('58 Orbach ,’66 Yang, Yang ,’'79 Faddeev, Sklyanin, Takhtadjan )
Increase in rigor & simplification of expressions.

@ Eigenvectors highly intricate expression in basis where o, 0'%, of are simple.
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A correlator of interest

* Computation of correlation functions ( W1 [o10m| W2 ) ~> highly complex problem.
Some simplifications
® Correlation functionsat T = 0K = expectation values in the ground state.
@ Study at first symmetric correlators
1 0
{38

(Lmﬂ B) + Ln-1(B) = 2Lm (B)),_y — M) + 1

e Generating function £, (8) = (GSl( 0 :6 )

<”1”er1> 0ﬁ2

@® Combinatorics strongly simplify at cos(¢) = 0 (free fermion point)

s> 1% results for free fermions == Toeplitz or Fredholm determinant representations

45 years of efforts :
Kaufman, Onsager , Lieb, Mattis, Schulz , Lenard , McCoy, Wu , Korepin, Slavnov
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Multiple integral representations at the free fermion point

¢ Fredholm determinant of pure sine kernel for £, (B)

q
det[I+SmJ = Z%fdetn
-q

n=0

Sm (A1, 11) ... Sm (A1, 4n) & _ 1 8N < [Po(1) = po(w)]
ey . 1) = T N
d"a with Sy, (4,u) 7 sinh(A — )

Sm (/lm /ll) .- Sm (/lm /ln)

The number of integrals varies from 0 to +oco ~» extract m — oo behavior.

©

Tour de force direct analysis ('79 Tracy, Vaidya );
Sine kernel related to Painlevé V ('80 Jimbo, Miwa, Mori, Sato  );

©

@ transverse Ising, imp. bosons ('83-'86 McCoy, Perk, Shrock, Tang );

@ Operator methods ('94 Widom ,'94 Budylin, Buslayev ) ;

¢

RHP setting for integrable integral operators ('90 lts, Izergin, Korepin, Slavnov ).
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Beyond the free fermion point

* Algebraic version of Bethe Ansatz (79 Faddeev, Takhtadjan, Sklyanin )

e Algebraic construction of eigenstates | {4;} ) = B (11)...B (An)|0)

e First series of multiple integrals at T # 0 and h # 0 ('84 Izergin-Korepin )
. . 4o 4
« (i(x,0)j(0,0)), = z [ B (... ) - d"A
n= -q

1% (A1,...,4p) = partitions & combinatorics & non — linear integral equations
Norms (’81 Gaudin, McCoy, Wu ,’82 Korepin ), Scalar products ('89 Slavnov ),
e Dual fields based det. rep. (97 Kojima, Korepin, Slavnov )

_det[/ + Va(x, 1) ]|0)

(w00, =(let0+ 7)o Z e

Asymptotic behaviour of correlation functions.



Motivations, results
Setting of the problem
Multiple integrals from integrable models

Going beyond the free-fermion point: The vertex operator approach

e Multiple integrals representation matrix elements of reduced density matrix XXZ (T=0):
(cos(¢) > 1792 Jimbo, Miki, Miwa, Nakayashiki and —1 < cos({) < 1’96 Jimbo, Miwa )

tre,..m [pO' O'm] =(oiof) qu;m f(g (A1,...sAm)d™

e Small m separation of integrals p (‘03 Boos, Korepin, Smirnov ;’06 Sato, Shiroishi,
Takahashi )

1 16
(0o =3~ 3 In2+30(3)

e Free fermionic structure & algebraic separation of integrals at generic m
(’04-'08 Boos, Jimbo, Miwa, Smirnov, Takeyama )
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Going beyond the free-fermion point: The Bethe Ansatz approach

e Solution of the inverse problem ('99 Kitanine, Maillet, Terras )

e Numerics: dynamical structure factors (XXZ, NLSM) S (q.w) = F [(j(x,t)j(0,0))7] (w. q)
(’05 Caux, Hagemans, Maillet '06 Caux, Calabrese, Slavnov )

e Series of mult. int. for 2 pt. functions (’'00-'05 Kitanine, Maillet, Slavnov, Terras )
oo 4
@50h) = ) f T (s opin) A
n=1
-q

e Long-distance asymptotics A # 0 from first principles (08 KKMST )

1
e Long-distance & large-time asymptotics ('11 K., Terras )<j(x, 1)j(o, O)> = Eagaﬁa(ﬁ)(x, t)

Q. 0) = @) + 1Y [ Huo (2

=1l o,
t

structure asymptotic series
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Results following from the restricted sum approach

Long-distance asymptotics of densities at T = 0K
11 Kitanine, K., Maillet, Slavnov, Terras

density-density correlation function of the NLS model at T =0K:
(G.5]j(0,0)j(x,0)|G.S.) z2 X 2cos (2x¢pe)
= (j(0,0))? - 14+o0(1 7P (1+o(1
<G.S-|G.S-> e, 0p 27T2X2( o)+ ;1 x2*Z? il (1 + 0 (1))
2
2222 |(G.5 | (0, 0)|umkp)|
(7el? = lim (—) 2 2
Lo\ 1G-S.{J" - [Jumicpl]
AP = 2pr * ground state in positive chemical potential
(000000000000000000000
—PF PF * one Umklapp excitation AE =0 AP = 2pg .

Confirms C.F.T./Luttinger liquid-based predictions.
Agrees with RHP approach ('08 KKMST ).

Similar results for XXZ.
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Results following from the restricted sum approach . .
time asymptotics

T=0K leading harmonics in long-time & d|stance asymptotics
to appear KKMST

Currents : j(x,t) = €W (x) W (x) e asymptotic regime x — +co and x/1 fixed.

Overall structure of the asymptotic series (space-like regime):

_ ' C(pe@ 2P X 24122
(l(X,t)](O,O))—(7) - z—ﬂzﬁ(l‘f‘ (1))
e/xlurp,: e—lx[,p,:

+ ©

(R)
) Al A
Cril-€Z [—j(x — vpt)]” 6 [i(x + vet)]

{4 +6-<0
le e[ F0 2
it _ " (0)]? z 7 |
s e it +6)xp(0) tr,(/io)]( _ [P’ (Ao ) 4o 140(1)) .
~ilxp (o) — te”(A0)] (1+|€++€_|) ( )

* Ao Saddle-point of the oscillating phase: p’(1g) — t&’(4g) /x = 0.

~» p dressed momentum & ¢ dressed energy.
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. " tics
Results following from the restricted sum approach The large-distance and long-time asymptotics

The e

Form factor interpretation of the amplitudes

) 2
70, = lim {(L)[#Zﬂg)fﬂm . (G.s]i () [Ex(e+: )| }
B le.s - [lExes: el

* {:#additional particlesatq {(_:# additional particlesat—q |(+ 4 (_|: # particlesat

Ao
* ground state in positive chemical potential
-q q 0
CC00000000000000000000 L] AE = {' + (’7 & /1
f{’ _‘; _(l) * excitation I l#(40)
- + AP =ty 4+ C_|p(A0) = €+ IPF — 1E-I(=pF)

@ Critical exponents Agf_/fﬁ) originate from excitations on Fermi boundaries.

AP, = (6 +0)0(@.40) - (6. -0) - £(a.0) (1= 5-) 9lw) = 64 -1)

6y + O

@ Critical exponent originates from gaussian saddle-point.

Agrees with the first terms obtained through Natte series ('11 K., Terras).
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exponents

The power-law behavior of Fourier transforms (NLSM)

to appear KKMST (to appear)
(k, w) configuartion close to the hole excitation line

(pr - p(20).-5(20))  with 1o €]-q;q] .

* The hole treshold ® o
R L) ()2
= (dw) [sw] P10 TR0t (2n) | F o

S(pe = p(A0). —&( o) + 6w) = & .
[v + ve]210 [ve — v]210 F(A( ) A(lo))

v: velocity of the hole at g ve: velocity excitations on Fremi boundary.

il = fim

L—+4c0

{(L)HA@ +alt) ‘(G.S.|j(0) |Ex>‘2}
2n

lo.s - llex?

* ground state
00000000000000 00000
-q Ao q * excitation{

AE *E(/lo)
AP = pr-p(do)
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The edge exponents

(k, w) configuartion close to the particle excitation line

(p(A0) - pr.£(A0))  with Ao € ]g;+oo .

* The particle treshold

[6w ] 10JrA 1)0 (2n 2|7"(l) |2

S(p(20) = pr. (o) + dw) =
( ) [v+ VF]A(*l?U[VF - v]A(—l);o ra (R) +A( ))

=(6w) sin [nA_l;O] + =(-6w) sin[za%) |
sin ”[A(j;)o + A(,Ll);OJ

Microscopic model approach ~» the non-linear Luttinger-based predictions.
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The form factor approach to the asymptotics

The form factor approach

Form factor expansion for finite L of O (x,t) = €0 (x) e Mt

(G.S.I0(x,t)0" (0,0)|G.S.) = Z< G.S.|e*PHH0 (0,0) P {1)e )} {u)ex 107 (0,0)|G.S.)
(Ma
= Z X(PexPG.s )-it(Eex—Ec.s.) [ G.5.10(0,0) | {u)ex >|2
{thex

presumed steps of the computation
@ Characterize the excitations above the ground state;

@ Asymptotic in size L formula for ( G.S.10(0,0)| {¢}e )
@ Localize sums at stationary-points: saddle-point, ends of Fermi zone ;

@ Sum-up in the asymptotic regime.
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Conclusion

Conslusion and perspectives

Review of the results

Leading asymptotics of any harmonic in long-distance ;
All harmonics in long-distance and large-time for pure particle-hole spectrum ;

Reproduction of edge exponents with amplitudes from ABA ;

Next possible extensions

Include the effects of bound states (time dependent case) .
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