Asymptotic behaviour of correlation functions.

K. K. Kozlowski

Institut de Mathématiques de Bourgogne, UB

Laboratoire d'Annecy-le-Vieux de physique théorique

In collaboration with : N. Kitanine, J.-M. Maillet, N. Slavnov and V. Terras .

"A form factor approach to the asymptotic behavior of correlation functions in critical models." J.Stat.Mech.(2011). "Form factor approach to dynamical correlation functions in critical models.". to appear

Laboratoire d'Annecy-le-Vieux de physique théorique, Annecy, Juin 2012

←ロト ←何ト ← ヨト ← ヨト 。

つくい

Outline

[Motivations, results](#page-2-0)

- [Setting of the problem](#page-2-0)
- [Multiple integrals from integrable models](#page-13-0)

[Results following from the restricted sum approach](#page-17-0)

- [The large-distance asymptotics](#page-17-0)
- [The large-distance and long-time asymptotics](#page-18-0)
- [The edge exponents](#page-20-0)

³ [The form factor approach to the asymptotics](#page-22-0)

[Conclusion](#page-23-0)

4. 17. 18.

[Results following from the restricted sum approach](#page-17-0) [The form factor approach to the asymptotics](#page-22-0) [Conclusion](#page-23-0) [Setting of the problem](#page-2-0) [Multiple integrals from integrable models](#page-13-0)

Generalities about lattice models

- ⊛ Linear operator H on Hilbert space H = V¹ ⊗ · · · ⊗ V^L .
- ^{**■** Spaces \mathcal{V}_ℓ can be finite or infinite dimensional. Often isomophic $\mathcal{V}_\ell \simeq \mathcal{V}_0$.}

◉ Basis of operators $O^{(\alpha)}$ **on** \mathcal{V}_0 \rightsquigarrow **operators** $O^{(\alpha)}_{{\ell}} = \underbrace{\mathop{\rm id}\nolimits \otimes \cdots \otimes \mathop{\rm id}\nolimits}_{\ell \text{ times}} \otimes O^{(\alpha)} \otimes \underbrace{\mathop{\rm id}\nolimits \cdots \otimes \mathop{\rm id}\nolimits}_{N \text{ times}}.$ ℓ−1times $N-\ell-1$

Often H has nearest neighbor coupling structure

$$
\mathcal{H} = \sum_{j=1}^{L} f(O_j^{(\alpha)}, O_{j+1}^{(\beta)}) + b \text{dry terms}
$$

Example The periodic XXZ spin-1/2 chain:

$$
\mathcal{H}_{XXZ} = J \sum_{n=1}^{L} \left\{ \sigma_n^X \sigma_{n+1}^X + \sigma_n^Y \sigma_{n+1}^Y + \cos(\zeta) \sigma_n^Z \sigma_{n+1}^Z + h \sigma_n^Z \right\} , \quad \sigma_{n+L} \equiv \sigma_n
$$

► Local spaces $\mathscr{V}_\ell \simeq \mathscr{V}_0 \simeq \mathbb{C}^2$ and local operators

$$
\sigma^x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma^y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma^z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad h \equiv \text{magnetic field}.
$$

←ロト ←何ト ←ヨト ←ヨト 。

∍

[Results following from the restricted sum approach](#page-17-0) [The form factor approach to the asymptotics](#page-22-0) [Conclusion](#page-23-0) [Setting of the problem](#page-2-0) [Multiple integrals from integrable models](#page-13-0)

What one would like to know?

- i) Find the Eigenstates and Eigenvectors of $\mathcal{H}|\Psi_{\beta}\rangle = E_{\beta}|\Psi_{\beta}\rangle$;
- ii) Compute in closed form and characterize the correlation functions

 $\langle \Psi_{\gamma} | O_1^{(\alpha_1)} \dots O_m^{(\alpha_m)} | \Psi_{\beta} \rangle$;

- Characterize intrinsic & response properties of a system.
- Appear in perturbative expansions: $H \hookrightarrow H + H_{pert}$.
- iii) Characterize the behaviour at finite temperatures

$$
\langle O_m^{(\alpha_m)} O_1^{(\alpha_1)} \rangle_T \equiv \text{tr} \big[e^{-\frac{\gamma I}{T}} O_m^{(\alpha_m)} O_1^{(\alpha_1)} \big] / \text{tr} \big[e^{-\frac{\gamma I}{T}} \big]
$$

® Program i) – iii) especially interesting when $L \rightarrow +\infty$.

≮ロト (母) (ヨ) (ヨ)

 $2Q$

G.

[Results following from the restricted sum approach](#page-17-0) [The form factor approach to the asymptotics](#page-22-0) [Conclusion](#page-23-0) [Setting of the problem](#page-2-0) [Multiple integrals from integrable models](#page-13-0)

Low-lying excitations in 1D quantum Hamiltonians

★ '84 Cardy Central charge $\rightarrow \rightarrow$ **finite-size corrections to ground state energy ;**

$$
E_{G.S.} = L\varepsilon - c\frac{\pi v_F}{6L} + O\left(\frac{1}{L^2}\right) \quad \text{and} \quad E_{\text{ex}} - E_{G.S.} = \frac{2\pi v_F}{L}\delta
$$

Bethe Ansatz \rightsquigarrow spectrum given by solutions to algebraic equations

$$
F^L(\lambda_j) = \prod_{a=1}^N S(\lambda_j, \lambda_k) \quad \text{and} \quad E(\lambda_j) = \sum_{j=1}^N \varepsilon_0(\lambda_j)
$$

 \rightsquigarrow Extract the large N, L behavior.

- \star Methods for computing finite-size corrections from Bethe Ansatz **'87-'95** (Batchelor, Destri, DeVega, Klumper, Pearce, Woynarowich, Wehner, Zittartz) ;
- Proof of Cardy's predictions for the conformal structure of spectrum:

 $c = 1$ $\delta = \left(\frac{n_1}{2^n}\right)$ 2Z $\int_0^2 + (\mathcal{Z}n_2)^2 + n_3$ and linear integral equations $\rightsquigarrow v_F$, \mathcal{Z}

イロメス 何 メスきょくきょうき

 $2Q$

[Results following from the restricted sum approach](#page-17-0) [The form factor approach to the asymptotics](#page-22-0) [Conclusion](#page-23-0) [Setting of the problem](#page-2-0) [Multiple integrals from integrable models](#page-13-0)

Typical long-distance behavior of correlators

T>0 exponential decay at long-distance is expected:

$$
\langle O_m O_1 \rangle_T = \langle O_1 \rangle_T^2 + \mathcal{A} \exp(-m/\xi) + \dots
$$

 $T=0$ Model becomes critical if gapless spectrum \implies algebraic decay

$$
\langle O_mO_1\rangle_{T=0} \equiv \frac{\langle G.S.|O_mO_1|G.S.\rangle}{\langle G.S.|G.S.\rangle} \simeq \langle O_1\rangle_0^2 + \frac{C_1}{m^{\alpha_1}} + \frac{C_2}{m^{\alpha_2}}\cos(2mp_F) + \dots
$$

• Prediction of critical exponents α_i , correlation lengths ξ by approximate methods

- Correspondence with a Conformal Field Theory (**'70 Polyakov** , **'84 Cardy**)
- Correspondence with Luttinger liquid (**'75 Luther, Peschel** , **'81 Haldane**)

←ロ ▶ ←何 ▶ ← ヨ ▶ ← ヨ ▶ 。

[Results following from the restricted sum approach](#page-17-0) [The form factor approach to the asymptotics](#page-22-0) [Conclusion](#page-23-0)

[Setting of the problem](#page-2-0) [Multiple integrals from integrable models](#page-13-0)

Predictions for the critical exponents

• Correlators in a two-dimensional CFT on a strip of width ^L

$$
\left\langle \phi(z_1,\overline{z}_1)\phi(z_2,\overline{z}_2) \right\rangle \;=\; C \Big(\frac{\pi/L}{\sinh[\pi(z_1-z_2)/L]}\Big)^{2\Delta_+} \Big(\frac{\pi/L}{\sinh[\pi(\overline{z}_1-\overline{z}_2)/L]}\Big)^{2\Delta_-} \quad z_a = x_a + i v_F t_a \; .
$$

• Excitation energy from form factor expansion

$$
\left\langle \phi(z_1, \overline{z}_1) \phi(z_2, \overline{z}_2) \right\rangle = \sum_{\Psi_{\text{ex}}} |\langle 0 | \phi(0, 0) | \Psi_{\text{ex}} \rangle|^2 e^{-(t_1 - t_2)(E_{\text{ex}} - E_{\text{G.S.}}) - i(x_1 - x_2)(P_{\text{ex}} - P_{\text{G.S.}})} \right\}
$$

$$
E_{\text{ex}} - E_{\text{G.S.}} = \frac{2\pi}{L} v_F(\Delta_+ + \Delta_-) \quad \text{and} \quad P_{\text{ex}} - P_{\text{G.S.}} = \frac{2\pi}{L} (\Delta_+ - \Delta_-)
$$

- **'70** Polyakov Conformal invariance of correlators at large distances ;
- **9** '84 Cardy Central charge \rightarrow finite-size corrections to ground state energy :

Low-lying excitations \leftrightarrow conformal dimensions Δ_+ \leadsto asymptotics

←ロ ▶ ←何 ▶ ← ヨ ▶ ← ヨ ▶ 。

 $2Q$

[Results following from the restricted sum approach](#page-17-0) [The form factor approach to the asymptotics](#page-22-0) [Conclusion](#page-23-0) [Setting of the problem](#page-2-0) [Multiple integrals from integrable models](#page-13-0)

Asymptotic behavior of correlation functions

⊛ The non-linear Schrödinger model

$$
H = \int_{0}^{L} \left\{ \partial_{y} \Psi^{\dagger} \left(y \right) \partial_{y} \Psi \left(y \right) + c \Psi^{\dagger} \left(y \right) \Psi^{\dagger} \left(y \right) \Psi \left(y \right) \Psi \left(y \right) - h \Psi^{\dagger} \left(y \right) \Psi \left(y \right) \right\} \mathrm{d}y
$$

- L: length of circle, $c > 0$ coupling constant (repulsive regime), $h > 0$ chemical potential.
	- NLSM \equiv quantum critical model at $T = 0K$
	- low-lying excitations from large L analysis of Bethe Ansatz equations
- Density-density correlator $j(x) = \Psi^{\dagger}(x) \Psi(x)$:

$$
\frac{\langle G.S. | j(x) j(0) | G.S. \rangle}{\langle G.S. | G.S. \rangle} = \langle j(x) j(0) \rangle \approx \langle j(0) \rangle^2 + \frac{C_1}{x^2} + C_2 \frac{\cos(2x p_F)}{x^{2Z^2}} + ...
$$

◆ Reduced density matrix

$$
\langle \Psi\left(x\right)\Psi^{\dagger}\left(0\right) \rangle \simeq C_{3}x^{-\tfrac{1}{2\mathcal{Z}^{2}}} \ + \ \ldots
$$

←ロト ←何ト ←ヨト ←ヨト 。

э

[Results following from the restricted sum approach](#page-17-0) [The form factor approach to the asymptotics](#page-22-0) [Conclusion](#page-23-0)

Turining the time on

[Setting of the problem](#page-2-0) [Multiple integrals from integrable models](#page-13-0)

 \blacklozenge Predictions for the long-distance/long-time behavior at $T = 0K$ restricted to $x \gg v_F t$:

$$
\langle j(x,t) \, j(0,0) \rangle \simeq \langle j(0,0) \rangle^2 + C_1' \frac{x^2 + v_F^2 t^2}{(x^2 - v_F^2 t^2)^2} + C_2' \frac{\cos(2x p_F)}{(x^2 - v_F^2 x^2)^{2}} + \dots
$$

Consistency problem with time-dependent asymptotics

$$
\frac{x^2 + v_F^2 t^2}{(x^2 - v_F^2 t^2)^2} (1 + o(1)) = \frac{1}{x^2} (1 + o(1)) \text{ when } x \gg v_F t
$$

• What happens when $x \sim v_F t$?

イロト イ押 トイヨ トイヨ ト

 $2Q$

э

[Results following from the restricted sum approach](#page-17-0) [The form factor approach to the asymptotics](#page-22-0) [Conclusion](#page-23-0) [Setting of the problem](#page-2-0) [Multiple integrals from integrable models](#page-13-0)

The edge exponents for Fourier transforms

Experiments measure Fourier transforms

$$
S(k,\omega) = \int_{\mathbb{R}^2} e^{i(\omega t - kx)} \langle j(x,t) j(0,0) \rangle dx dt
$$

 \rightarrow DSF measured by Fourier sampling of time of flight images or Bragg spectroscopy.

⋆ **'06** (Caux, Calabrese) Density structure factor in NLSM

← □ ▶ ← ← □ ▶ \sim ヨメ イヨメ

 QQ

[Results following from the restricted sum approach](#page-17-0) [The form factor approach to the asymptotics](#page-22-0) [Conclusion](#page-23-0) [Setting of the problem](#page-2-0) [Multiple integrals from integrable models](#page-13-0)

Predictions for the behavior near the edges

- **'67** (Mahan), **'67** (Noziére, De Dominicus) Arguments for a power-law behavior near edges.
- **'08** (Glazman, Imambekov) Non-linear Luttinger liquid \rightsquigarrow predictions for edge exponents.

$$
S(k,\omega) \simeq \mathscr{A}(k) \cdot \Xi(\omega - \varepsilon_h(k)) \cdot [\omega - \varepsilon_h(k)]^{\vartheta} \qquad \vartheta > 0
$$

- **★ '09** (Affleck, Pereira, White) X-ray edge-type model \rightsquigarrow predictions for edge exponents.
- \star **'10** (Caux, Glazman, Imambekov, Shashi) Predictions for $\mathscr{A}(k)$ (NLSM);
- Can these predictions be confirmed by an approach solely on the microscopic model?

←ロ ▶ ←何 ▶ ← ヨ ▶ ← ヨ ▶ 。

э

[Results following from the restricted sum approach](#page-17-0) [The form factor approach to the asymptotics](#page-22-0) [Conclusion](#page-23-0) [Setting of the problem](#page-2-0) [Multiple integrals from integrable models](#page-13-0)

The XXZ spin-1/2 chain

$$
\mathcal{H}_{XXZ} = J \sum_{n=1}^{L} \left\{ \sigma_n^X \sigma_{n+1}^X + \sigma_n^Y \sigma_{n+1}^Y + \cos(\zeta) \sigma_n^Z \sigma_{n+1}^Z + h \sigma_n^Z \right\} , \quad \sigma_{n+L} \equiv \sigma_n
$$

 \star Coordinate Bethe Ansatz at $cos(\zeta) = 1$ ('31 **Bethe**) :

Eigenvectors $| \lambda_1, \ldots, \lambda_N \rangle = \sum_{\{n\}} c_{\{n\}} (\lambda_1, \ldots, \lambda_N) | \{n\} \rangle$ & Eigenvalues $E = \sum_{a=1}^N \epsilon_0 (\lambda_a)$

Parameterized by sols to Bethe equations

$$
\left(\frac{\sinh(\lambda_j + i\zeta/2)}{\sinh(\lambda_j - i\zeta/2)}\right)^L = \prod_{\substack{a=1\\ \neq j}}^N \frac{\sinh(\lambda_j - \lambda_k + i\zeta)}{\sinh(\lambda_j - \lambda_k - i\zeta)}
$$

≮ロト (母) (ヨ) (ヨ)

 Ω

⋆ Further developments (**'58 Orbach , '66 Yang, Yang , '79 Faddeev, Sklyanin, Takhtadjan**) Increase in rigor & simplification of expressions.

[⊛] Eigenvectors *highly intricate* expression in basis where σ_n^x , σ_n^y , σ_n^z are simple.

[Results following from the restricted sum approach](#page-17-0) [The form factor approach to the asymptotics](#page-22-0) [Conclusion](#page-23-0) [Setting of the problem](#page-2-0) [Multiple integrals from integrable models](#page-13-0)

A correlator of interest

Computation of correlation functions $\langle \Psi_1 | \sigma_1 \sigma_m | \Psi_2 \rangle \rightsquigarrow$ highly complex problem.

Some simplifications

- ⊛ Correlation functions at ^T = 0^K ≡ expectation values in the ground state.
- ⊛ Study at first symmetric correlators
- Generating function $\mathcal{L}_m(\beta) = \langle GS \vert \begin{pmatrix} 1 & 0 \\ 0 & A \end{pmatrix} \rangle$ $\begin{pmatrix} 1 & 0 \\ 0 & e^{\beta} \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 0 & e^{\beta} \end{pmatrix}$ $\left.\begin{array}{cc} 1 & 0 \ 0 & \mathrm{e}^{\beta} \end{array}\right)_m$ | GS \rangle m

$$
\langle \sigma_1^Z \sigma_{m+1}^Z \rangle = \frac{\partial^2}{\partial \beta^2} \big(\mathcal{L}_{m+1}(\beta) + \mathcal{L}_{m-1}(\beta) - 2 \mathcal{L}_m(\beta) \big)_{|\beta=0} - 4 \langle \sigma_1^Z \rangle + 1
$$

Combinatorics strongly simplify at $cos(\zeta) = 0$ (free fermion point)

→ 1st results for free fermions \implies Toeplitz or Fredholm determinant representations

45 years of efforts:

Kaufman, Onsager, Lieb, Mattis, Schulz, Lenard, McCoy, Wu, Korepin, Slavnov . . .

YO K (FRA 1984) € VOO

[Results following from the restricted sum approach](#page-17-0) [The form factor approach to the asymptotics](#page-22-0) [Conclusion](#page-23-0)

[Setting of the problem](#page-2-0) [Multiple integrals from integrable models](#page-13-0)

Multiple integral representations at the free fermion point

Fredholm determinant of pure sine kernel for $\mathcal{L}_m(\beta)$

$$
\det\left[I+S_m\right] = \sum_{n\geq 0} \frac{1}{n!} \int_{-q}^{q} \det_n \left[\frac{S_m(\lambda_1, \lambda_1) \dots S_m(\lambda_1, \lambda_n)}{S_m(\lambda_n, \lambda_1) \dots S_m(\lambda_n, \lambda_n)}\right] \cdot d^n \lambda \quad \text{with} \quad S_m(\lambda, \mu) = \frac{e^{\beta}-1}{\pi} \frac{\sin \frac{m}{2} [p_0(\lambda)-p_0(\mu)]}{\sinh(\lambda-\mu)}
$$

The number of integrals **varies** from 0 to $+\infty \rightarrow \infty$ extract $m \rightarrow +\infty$ behavior.

- Tour de force direct analysis (**'79 Tracy, Vaidya**);
- Sine kernel related to Painlevé V (**'80 Jimbo, Miwa, Mori, Sato**);
- transverse Ising, imp. bosons (**'83-'86 McCoy, Perk, Shrock, Tang**);
- Operator methods (**'94 Widom** , **'94 Budylin, Buslayev**) ;
- RHP setting for integrable integral operators (**'90 Its, Izergin, Korepin, Slavnov**).

≮ロト (母) (ヨ) (ヨ)

G.

[Results following from the restricted sum approach](#page-17-0) [The form factor approach to the asymptotics](#page-22-0) [Conclusion](#page-23-0) [Setting of the problem](#page-2-0) [Multiple integrals from integrable models](#page-13-0)

Beyond the free fermion point

- ⋆ Algebraic version of Bethe Ansatz (**'79 Faddeev, Takhtadjan, Sklyanin**)
	- Algebraic construction of eigenstates $|\{\lambda_i\}\rangle = B(\lambda_1) \dots B(\lambda_N) |0\rangle$
- First series of multiple integrals at $T \neq 0$ and $h \neq 0$ (**'84 Izergin-Korepin**)

$$
\bullet \langle j(x,0) \, j(0,0) \rangle_T = \sum_{n=1}^{+\infty} \int\limits_{-q}^{q} l_n^x(\lambda_1,\ldots,\lambda_n) \cdot d^n \lambda
$$

 $I_n^{\chi}(\lambda_1,\ldots,\lambda_n)$ = partitions & combinatorics & non – linear integral equations

- ⊛ Norms (**'81 Gaudin, McCoy, Wu** , **'82 Korepin**), Scalar products (**'89 Slavnov**),
- Dual fields based det. rep. (**'97 Kojima, Korepin, Slavnov**)

$$
\left\langle \Psi(0,0)\Psi^\dagger(x,t)\right\rangle_T=\left(0\big|\left(G(x,t)+\frac{\partial}{\partial\alpha}\right)_{\alpha=0}\cdot\frac{\det[I+\widehat{V}_\alpha(x,t)]}{\det[I-K]}|0\right)
$$

イロメ イ何メ イヨメ イヨメーヨー

[Results following from the restricted sum approach](#page-17-0) [The form factor approach to the asymptotics](#page-22-0) [Conclusion](#page-23-0) [Setting of the problem](#page-2-0) [Multiple integrals from integrable models](#page-13-0)

Going beyond the free-fermion point: The vertex operator approach

• Multiple integrals representation matrix elements of reduced density matrix XXZ (T=0): (cos(ζ) > 1 **'92 Jimbo, Miki, Miwa, Nakayashiki** and −1 < cos(ζ) < 1 **'96 Jimbo, Miwa**)

$$
\text{tr}_{1,\dots,m}\left[\rho\,\sigma_1^z\,\sigma_m^z\right] = \langle\sigma_1^z\,\sigma_m^z\rangle \qquad \rho_{\epsilon_1\dots\epsilon_m}^{\epsilon'_1,\dots,\epsilon'_m} = \int_{\mathscr{C}}\mathcal{G}\left(\lambda_1,\dots,\lambda_m\right)\text{d}^m\lambda
$$

• Small ^m separation of integrals ρ (**'03 Boos, Korepin, Smirnov**; **'06 Sato, Shiroishi, Takahashi**)

$$
\langle \sigma_1^2 \sigma_3^2 \rangle = \frac{1}{3} - \frac{16}{3} \ln 2 + 3\zeta(3)
$$

• Free fermionic structure $\&$ algebraic separation of integrals at generic m (**'04-'08 Boos, Jimbo, Miwa, Smirnov, Takeyama**)

←ロ ▶ ←何 ▶ ← ヨ ▶ ← ヨ ▶ ..

[Results following from the restricted sum approach](#page-17-0) [The form factor approach to the asymptotics](#page-22-0) [Conclusion](#page-23-0) [Setting of the problem](#page-2-0) [Multiple integrals from integrable models](#page-13-0)

Going beyond the free-fermion point: The Bethe Ansatz approach

- Solution of the inverse problem (**'99 Kitanine, Maillet, Terras**)
- Numerics: dynamical structure factors (XXZ, NLSM) $S(q,\omega) = \mathcal{F}[\langle j(x,t)j(0,0)\rangle_T](\omega,q)$ (**'05 Caux, Hagemans, Maillet '06 Caux, Calabrese, Slavnov**)
- Series of mult. int. for 2 pt. functions (**'00-'05 Kitanine, Maillet, Slavnov, Terras**)

$$
\langle \sigma_1^z \sigma_{m+1}^z \rangle = \sum_{n=1}^{+\infty} \int\limits_{-q}^q \mathcal{F}_m^{(n)}(\mu_1, \ldots, \mu_n) d^n \mu
$$

- Long-distance asymptotics ∆ , 0 from first principles (**'08 KKMST**)
- Long-distance & large-time asymptotics ('11 K., Terras) $\langle j(x, t)j(0, 0)\rangle = \frac{1}{2}$ $\frac{1}{2}\partial_{\beta}^{2}\partial_{x}^{2}Q^{(\beta)}(x,t)$

$$
Q^{(\beta)}(x,t) = Q_{\text{asym}}^{(\beta)}(x,t) + \sum_{n \geq 1} \sum_{\{e_i\}} \underbrace{\int_{\mathfrak{E}_{\{e_i\}}}{H_{n;e_i}}(x,t; \{z_t\}) d^n z_t}_{\text{structure asymptotic series}}
$$

イロト イ押 トイヨ トイヨ トー

[The large-distance asymptotics](#page-17-0) [The large-distance and long-time asymptotics](#page-18-0) [The edge exponents](#page-20-0)

Long-distance asymptotics of densities at $T = 0K$

'11 Kitanine, K., Maillet, Slavnov, Terras

density-density correlation function of the NLS model at $T = 0$ K:

$$
\frac{\left\langle G.S. \big| j(0,0) j(x,0) \big| G.S. \right\rangle}{\left\langle G.S. \big| G.S. \right\rangle} = \left\langle j(0,0) \right\rangle^2 - \frac{Z^2}{2\pi^2 x^2} \left(1 + o(1)\right) \ + \ \sum_{\ell=1}^{+\infty} \frac{2 \cos\left(2x\ell p_F\right)}{x^{2\ell^2 Z^2}} \cdot \left| \mathcal{F}_{\ell} \right|^2 \left(1 + o(1)\right)
$$

$$
|\mathcal{F}_{\ell}|^2 = \lim_{L \to +\infty} \left(\frac{L}{2\pi}\right)^{2\ell^2 Z^2} \frac{\left| \left\langle G.S. \right| j(0,0) \left| \text{umkp} \right| \right|^2}{\left\| G.S. \right\|^2 \cdot \left\| \text{umkp} \right\|^2}
$$

- ★ ground state in positive chemical potential
- ★ one Umklapp excitation $\Delta E = 0 \Delta P = 2p_F$.

←ロト ←何ト ←ヨト ←ヨト

 Ω

Confirms C.F.T./Luttinger liquid-based predictions.

Agrees with RHP approach ('08 KKMST).

 $\overline{\mathsf{S}}$ Similar results for XXZ.

[The large-distance asymptotics](#page-17-0) [The large-distance and long-time asymptotics](#page-18-0) [The edge exponents](#page-20-0)

T=0K leading harmonics in long-time & distance asymptotics

to appear KKMST

Currents: $j(x, t) \equiv e^{iHt} \Psi^{\dagger}(x) \Psi(x) e^{-iHt}$ asymptotic regime $x \to +\infty$ and x/t fixed.

Overall structure of the asymptotic series (space-like regime):

$$
\langle j(x,t) j(0,0) \rangle = \left(\frac{p_F}{\pi}\right)^2 - \frac{Z^2}{2\pi^2} \frac{x^2 + t^2 v_F^2}{(x^2 - t^2 v_F^2)^2} (1 + o(1))
$$

+
$$
\sum_{\substack{\ell_+:\ell_- \in \mathbb{Z} \\ \ell_+ + \ell_- \leq 0}} \frac{e^{ix\ell_+ p_F}}{[-i(x - v_F t)]} \frac{e^{-ix\ell_- p_F}}{[i(x + v_F t)]} \frac{e^{-ix\ell_- p_F}}{e^{ix\ell_+ \ell_-}} \\
\times e^{-i(\ell_+ + \ell_-)[xp(\lambda_0) - te(\lambda_0)]} \left(\frac{[p'(\lambda_0)]^2}{-i[xp''(\lambda_0) - te''(\lambda_0)]}\right)^{\frac{|\ell_+ + \ell_-|^2}{2}} \cdot \frac{(2\pi)^{\frac{|\ell_+ + \ell_-|}{2}}}{G(1 + |\ell_+ + \ell_-|)} (1 + o(1)) .
$$

 \star λ_0 **Saddle-point** of the oscillating phase: $p'(\lambda_0) - t\varepsilon'(\lambda_0)/x = 0$.

 \rightarrow p dressed momentum & ε dressed energy.

 QQ

G.

←ロト ←何ト ←ヨト ←ヨト 。

[The large-distance asymptotics](#page-17-0) [The large-distance and long-time asymptotics](#page-18-0) [The edge exponents](#page-20-0)

Form factor interpretation of the amplitudes

$$
\left| \mathcal{F}^{(j)}_{\ell_+,\ell_-} \right|^2 = \lim_{L \to +\infty} \left\{ \left(\frac{L}{2\pi} \right)^{|\ell_+ + \ell_-|^2 + \Delta^{(R)}_{\ell_+;\ell_-} + \Delta^{(L)}_{\ell_+;\ell_-}} \cdot \frac{\left| \left\langle G.S. \right| j(0) \left| \mathrm{Ex}(\ell_+;\ell_-) \right\rangle \right|^2}{\left\| G.S. \right\|^2 \cdot \left\| \mathrm{Ex}(\ell_+;\ell_-) \right\|^2} \right\}
$$

 \star ℓ_+ : # additional particles at q ℓ_- : # additional particles at $-q$ $|\ell_+ + \ell_-|$: # particles at λ

$$
-q_{\underbrace{\text{co}}_{-\ell_-} \qquad \text{co}}q_{\underbrace{\qquad \qquad \text{d}}_{-\ell_+}} \qquad \text{d} \qquad \text{d} \qquad \text{ground state in positive chemical potential}
$$
\n
$$
\Delta E = |\ell_+ + \ell_-| \varepsilon(\lambda_0)
$$
\n
$$
\Delta P = |\ell_+ + \ell_-| \rho(\lambda_0) - |\ell_+| \rho_F - |\ell_-|(-\rho_F)
$$

Critical exponents $\Delta_{\ell_+;\ell_-}^{(R/L)}$ originate from excitations on Fermi boundaries. $\Delta_{\ell_+;\ell_-}^{(\mathcal{R})} \;=\; (\ell_+ + \ell_-) \phi(q,\lambda_0) - \ell_- \phi(q,-q) - \ell_+ \phi(q,q) \qquad \Bigl(\text{\large I}-\frac{\text{\large \mathcal{K}}}{2\pi} \Bigr)$ 2π $\cdot \phi(\lambda, \mu) = \theta(\lambda - \mu)$

Critical exponent $\frac{|\ell_+ + \ell_-|^2}{2}$ $\frac{1}{2}$ originates from gaussian saddle-point.

Agrees with the first terms obtained through Natte series ('11 K., Terras).

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \mathbf{B} + \mathbf{A}$

[The large-distance asymptotics](#page-17-0) [The large-distance and long-time asymptotics](#page-18-0) [The edge exponents](#page-20-0)

The power-law behavior of Fourier transforms (NLSM)

to appear KKMST (to appear)

 (k, ω) configuartion close to the hole excitation line

 $(p_F - p(\lambda_0), -\varepsilon(\lambda_0))$ with $\lambda_0 \in]-q; q[$.

 (1)

The *hole* treshold

$$
S\big(p_F-p(\lambda_0),-\varepsilon(\lambda_0)+\delta\omega\big)\simeq\frac{\Xi\left(\delta\omega\right)[\delta\omega]^{\Delta_{1,0}^{(R)}}+\Delta_{1,0}^{(L)}-1}{\left[V+\nu_F\right]^{\Delta_{1,0}^{(R)}}\left[V_F-\nu\right]^{\Delta_{1,0}^{(L)}}}\cdot\frac{\left(2\pi\right)^2\left|\mathcal{F}_{1,0}^{(L)}\right|^2}{\Gamma\big(\Delta_{1,0}^{(R)}+\Delta_{1,0}^{(L)}\big)}\;.
$$

 (n)

v: velocity of the hole at λ_0 v_F: velocity excitations on Fremi boundary.

$$
|\mathcal{F}_{1,0}^{(j)}|^2 = \lim_{L \to +\infty} \left\{ \left(\frac{L}{2\pi} \right)^{1+\Delta_{1,0}^{(R)} + \Delta_{1,0}^{(L)}} \frac{\left| \left(G.S. \right| j(0) \left| \text{Ex} \right> \right|^2}{\left\| G.S. \right\|^2 \cdot \left\| \text{Ex} \right\|^2} \right\}
$$
\n
$$
\star \text{ ground state}
$$
\n
$$
\star \text{ excitation} \left\{ \begin{array}{ccc} \Delta E & = & -\varepsilon (\lambda_0) \\ \Delta P & = & p_F - p(\lambda_0) \end{array} \right\}
$$

∢≣

つくい

[Motivations, results](#page-2-0) [Results following from the restricted sum approach](#page-17-0) [The form factor approach to the asymptotics](#page-22-0) [Conclusion](#page-23-0) [The large-distance asymptotics](#page-17-0) [The large-distance and long-time asymptotics](#page-18-0) [The edge exponents](#page-20-0)

 (k, ω) configuartion close to the particle excitation line

 $(p(\lambda_0) - p_F, \varepsilon(\lambda_0))$ with $\lambda_0 \in [q; +\infty]$.

 \star The particle treshold

$$
S(p(\lambda_0) - p_F, \varepsilon(\lambda_0) + \delta \omega) \simeq \frac{[\delta \omega]^{\Delta_{-1,0}^{(R)}} + \Delta_{-1,0}^{(L)} - 1}{[v + v_F]^{\Delta_{-1,0}^{(R)}} [v_F - v]^{\Delta_{-1,0}^{(L)}}} \cdot \frac{(2\pi)^2 |\mathcal{F}_{-1,0}^{(L)}|^2}{\Gamma(\Delta_{1,0}^{(R)} + \Delta_{1,0}^{(L)})} \\
\times \frac{\Xi(\delta \omega) \sin \left[\pi \Delta_{-1,0}^{(L)} \right] + \Xi(-\delta \omega) \sin \left[\pi \Delta_{-1,0}^{(R)} \right]}{\sin \pi [\Delta_{-1,0}^{(R)} + \Delta_{-1,0}^{(L)}]}
$$

 \blacktriangleright Microscopic model approach \rightsquigarrow the non-linear Luttinger-based predictions.

イロト イ押 トイヨ トイヨ トー

 $2Q$

э

The form factor approach

Form factor expansion for finite L of $O(x, t) \equiv e^{iHt}O(x) e^{-iHt}$

$$
\langle G.S.|O(x,t)O^{\dagger}(0,0)|G.S.\rangle = \sum_{\{\mu\}_{\text{ex}}} \langle G.S.|e^{-ixP+iH}O(0,0)e^{ixP-iH}| \{\mu\}_{\text{ex}} \rangle \langle \{\mu\}_{\text{ex}} |O^{\dagger}(0,0)|G.S.\rangle
$$

$$
= \sum_{\{\mu\}_{\text{ex}}} e^{ix(P_{\text{ex}}P_{\text{G.S.}})-it(\mathcal{E}_{\text{ex}}-\mathcal{E}_{\text{G.S.}})} \left| \langle G.S.|O(0,0)| \{\mu\}_{\text{ex}} \rangle \right|^2
$$

presumed steps of the computation

- Characterize the excitations above the ground state;
- Asymptotic in *size* L formula for $\langle G.S. |O(0,0)| \ {\mu} \rangle_{\rm ex}$ \rangle ;
- Localize sums at stationary-points: saddle-point, ends of Fermi zone ;
- Sum-up in the asymptotic regime.

 $2Q$

э

←ロ ▶ ←何 ▶ ← ヨ ▶ ← ヨ ▶ ..

Conslusion and perspectives

Review of the results

- Leading asymptotics of **any** harmonic in long-distance ;
- ^{\blacksquare} **All** harmonics in long-distance and large-time for pure particle-hole spectrum ;
- $\mathcal V$ Reproduction of edge exponents with amplitudes from ABA ;

Next possible extensions

Include the effects of bound states (time dependent case).

ミメスミメ