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Generalities about lattice models

⊛ Linear operator H on Hilbert space H = V1 ⊗ · · · ⊗ VL .

⊛ Spaces Vℓ can be finite or infinite dimensional. Often isomophic Vℓ ≃ V0.

⊛ Basis of operators O(α) on V0  operators O(α)
ℓ

= id ⊗ · · · ⊗ id︸        ︷︷        ︸
ℓ−1times

⊗O(α) ⊗ id · · · ⊗ id︸     ︷︷     ︸
N−ℓ−1

.

OftenH has nearest neighbor coupling structure

H =
L∑

j=1
f(O(α)j ,O

(β)
j+1) + bdry terms

⊛ Example The periodic XXZ spin-1/2 chain:

HXXZ = J
L∑

n=1

{
σx

nσ
x
n+1 + σy

nσ
y
n+1 + cos(ζ)σz

nσ
z
n+1 + hσz

n

}
, σn+L ≡ σn

◮ Local spaces Vℓ ≃ V0 ≃ C
2 and local operators

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
h ≡ magnetic field.
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What one would like to know?

i) Find the Eigenstates and Eigenvectors ofH|Ψβ 〉 = Eβ |Ψβ 〉 ;

ii) Compute in closed form and characterize the correlation functions

〈Ψγ |O
(α1)
1 . . .O

(αm)
m |Ψβ 〉 ;

Characterize intrinsic & response properties of a system.

Appear in perturbative expansions: H ֒→H +Hpert .

iii) Characterize the behaviour at finite temperatures

〈O
(αm)
m O

(α1)
1 〉T ≡ tr

[
e−
H
T O

(αm)
m O

(α1)
1

]
/tr

[
e−
H
T
]

⊛ Program i) − iii) especially interesting when L → +∞.
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Low-lying excitations in 1D quantum Hamiltonians

⋆ ’84 Cardy Central charge  finite-size corrections to ground state energy ;

EG.S . = Lε − c
πvF

6L
+ O

(
1

L2

)
and Eex − EG.S . =

2πvF

L
δ

⋆ Bethe Ansatz  spectrum given by solutions to algebraic equations

FL(λj) =
N∏

a=1
S(λj , λk ) and E({λj }) =

N∑
j=1
ε0(λj)

 Extract the large N,L behavior.

⋆ Methods for computing finite-size corrections from Bethe Ansatz
’87-’95 (Batchelor, Destri, DeVega, Klumper, Pearce, Woynarowich, Wehner, Zittartz ) ;

⊛ Proof of Cardy’s predictions for the conformal structure of spectrum:

c = 1 δ =
( n1

2Z

)2
+ (Zn2)

2 + n3 and linear integral equations vF , Z
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Typical long-distance behavior of correlators

⊛ T>0 exponential decay at long-distance is expected:

〈OmO1〉T = 〈O1〉
2
T + A exp (−m/ξ) + . . .

⊛ T=0 Model becomes critical if gapless spectrum =⇒ algebraic decay

〈OmO1〉T=0 ≡
〈G.S. |OmO1|G.S. 〉
〈G.S. | G.S.〉

≃ 〈O1〉
2
0 +

C1

mα1
+

C2

mα2
cos (2mpF ) + . . . ...

• Prediction of critical exponents αi , correlation lengths ξ by approximate methods

Correspondence with a Conformal Field Theory (’70 Polyakov , ’84 Cardy )

Correspondence with Luttinger liquid (’75 Luther, Peschel , ’81 Haldane )
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Predictions for the critical exponents

• Correlators in a two-dimensional CFT on a strip of width L

〈
φ(z1, z1)φ(z2, z2)

〉
= C

(
π/L

sinh[π(z1 − z2)/L ]

)2∆+
(

π/L

sinh[π(z1 − z2)/L ]

)2∆−
za = xa + ivF ta .

• Excitation energy from form factor expansion
〈
φ(z1, z1)φ(z2, z2)

〉
=

∑
Ψex

|〈 0 |φ(0, 0)|Ψex 〉|
2e−(t1−t2)(Eex−EG.S.)−i(x1−x2)(Pex−PG.S.)

Eex − EG.S . =
2π
L

vF(∆+ + ∆−) and Pex − PG.S . =
2π
L
(∆+ − ∆−)

’70 Polyakov Conformal invariance of correlators at large distances ;

’84 Cardy Central charge  finite-size corrections to ground state energy ;

Low-lying excitations ↔ conformal dimensions ∆±  asymptotics
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Asymptotic behavior of correlation functions

⊛ The non-linear Schrödinger model

H =
L∫

0

{
∂yΨ

† (y)∂yΨ(y) + cΨ† (y)Ψ† (y)Ψ (y)Ψ (y) − hΨ† (y)Ψ (y)
}

dy

L : length of circle, c > 0 coupling constant (repulsive regime), h > 0 chemical potential.

NLSM ≡ quantum critical model at T = 0K

low-lying excitations from large L analysis of Bethe Ansatz equations

� Density-density correlator j (x) = Ψ† (x)Ψ (x) :

〈G.S. |j (x) j (0) |G.S. 〉
〈G.S. | G.S.〉

= 〈j (x) j (0)〉 ≃ 〈j (0)〉2 +
C1

x2
+ C2

cos (2xpF)

x2Z2
+ ...

� Reduced density matrix

〈Ψ(x)Ψ† (0)〉 ≃ C3x
− 1

2Z2 + ...

K. K. Kozlowski Asymptotic behaviour of correlation functions.
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Turining the time on

� Predictions for the long-distance/long-time behavior at T = 0K restricted to x ≫ vF t :

〈
j (x, t) j (0,0)

〉
≃ 〈j (0,0)〉2 + C ′1

x2 + v2
F t2

(
x2 − v2

F t2
)2

+ C ′2
cos (2xpF)

(
x2 − v2

Fx2
)Z2

+ ...

⇒ Consistency problem with time-dependent asymptotics

x2 + v2
F t2

(
x2 − v2

F t2
)2

(1 + o (1)) =
1

x2
(1 + o (1)) when x ≫ vF t

• What happens when x ∼ vF t ?
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The edge exponents for Fourier transforms

� Experiments measure Fourier transforms

S (k , ω) =
∫

R2

ei(ωt−kx)〈j (x , t) j (0, 0)〉dxdt

 DSF measured by Fourier sampling of time of flight images or Bragg spectroscopy.

⋆ ’06 (Caux, Calabrese) Density structure factor in NLSM
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Predictions for the behavior near the edges

⋆ ’67 (Mahan), ’67 (Noziére, De Dominicus) Arguments for a power-law behavior near edges.

⋆ ’08 (Glazman, Imambekov) Non-linear Luttinger liquid  predictions for edge exponents.

S (k , ω) ≃ A (k ) · Ξ(ω − εh(k )) · [ω − εh(k )]
ϑ

ϑ > 0

⋆ ’09 (Affleck, Pereira, White) X-ray edge-type model  predictions for edge exponents.

⋆ ’10 (Caux, Glazman, Imambekov, Shashi ) Predictions for A (k) (NLSM);

• Can these predictions be confirmed by an approach solely on the microscopic model?
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The XXZ spin-1/2 chain

HXXZ = J
L∑

n=1

{
σx

nσ
x
n+1 + σ

y
nσ

y
n+1 + cos(ζ)σz

nσ
z
n+1 + hσz

n

}
, σn+L ≡ σn

⋆ Coordinate Bethe Ansatz at cos(ζ) = 1 (’31 Bethe ) :

Eigenvectors | λ1, . . . , λN 〉 =
∑
{n}

c{n} (λ1, . . . , λN) | {n} 〉 & Eigenvalues E =
N∑

a=1
ǫ0 (λa)

Parameterized by sols to Bethe equations

(
sinh(λj + iζ/2)

sinh(λj − iζ/2)

)L

=
N∏

a=1
,j

sinh(λj − λk + iζ)

sinh(λj − λk − iζ)

⋆ Further developments (’58 Orbach , ’66 Yang, Yang , ’79 Faddeev, Sklyanin, Takhtadjan )
Increase in rigor & simplification of expressions.

⊛ Eigenvectors highly intricate expression in basis where σx
n , σ

y
n , σ

z
n are simple.
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A correlator of interest

⋆ Computation of correlation functions 〈Ψ1 |σ1σm |Ψ2 〉  highly complex problem.

Some simplifications

⊛ Correlation functions at T = 0K ≡ expectation values in the ground state.

⊛ Study at first symmetric correlators

• Generating function Lm (β) ≡ 〈GS |
( 1 0

0 eβ
)

1
. . .

( 1 0
0 eβ

)

m
|GS 〉

〈σz
1σ

z
m+1〉 =

∂2

∂β2

(
Lm+1 (β) + Lm−1 (β) − 2Lm (β)

)
|β=0

− 4〈σz
1〉 + 1

⊛ Combinatorics strongly simplify at cos(ζ) = 0 (free fermion point)

 1st results for free fermions =⇒ Toeplitz or Fredholm determinant representations

45 years of efforts :
Kaufman, Onsager , Lieb, Mattis, Schulz , Lenard , McCoy, Wu , Korepin, Slavnov . . .

K. K. Kozlowski Asymptotic behaviour of correlation functions.
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Multiple integral representations at the free fermion point

� Fredholm determinant of pure sine kernel for Lm (β)

det
[
I+Sm

]
=

∑

n≥0

1
n!

q∫

−q

detn


Sm (λ1, λ1) . . .Sm (λ1, λn)

. . .

Sm (λn , λ1) . . .Sm (λn , λn)

 ·dnλ with Sm (λ, µ) =
eβ − 1
π

sin
m
2
[p0(λ) − p0(µ)]

sinh(λ − µ)

The number of integrals varies from 0 to +∞ extract m → +∞ behavior.

Tour de force direct analysis (’79 Tracy, Vaidya );

Sine kernel related to Painlevé V (’80 Jimbo, Miwa, Mori, Sato );

transverse Ising, imp. bosons (’83-’86 McCoy, Perk, Shrock, Tang );

Operator methods (’94 Widom , ’94 Budylin, Buslayev ) ;

RHP setting for integrable integral operators (’90 Its, Izergin, Korepin, Slavnov ).

K. K. Kozlowski Asymptotic behaviour of correlation functions.
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Beyond the free fermion point

⋆ Algebraic version of Bethe Ansatz (’79 Faddeev, Takhtadjan, Sklyanin )

• Algebraic construction of eigenstates | {λj} 〉 = B (λ1) . . .B (λN) | 0 〉

• First series of multiple integrals at T , 0 and h , 0 ( ’84 Izergin-Korepin )

•
〈

j(x ,0) j(0, 0)
〉

T
=

+∞∑
n=1

q∫
−q

Ixn (λ1, . . . , λn) · dnλ

Ixn (λ1, . . . , λn) = partitions & combinatorics & non − linear integral equations

⊛ Norms ( ’81 Gaudin, McCoy, Wu , ’82 Korepin ), Scalar products ( ’89 Slavnov ),

• Dual fields based det. rep. (’97 Kojima, Korepin, Slavnov )

〈
Ψ(0, 0)Ψ†(x , t)

〉
T
=

(
0
∣∣∣
(
G(x , t) +

∂

∂α

)
|α=0
·

det[I + V̂α(x , t)]
det [I − K ]

∣∣∣0
)

K. K. Kozlowski Asymptotic behaviour of correlation functions.
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Going beyond the free-fermion point: The vertex operator approach

• Multiple integrals representation matrix elements of reduced density matrix XXZ (T=0):
(cos(ζ) > 1 ’92 Jimbo, Miki, Miwa, Nakayashiki and −1 < cos(ζ) < 1 ’96 Jimbo, Miwa )

tr1,...,m

[
ρσz

1 σ
z
m

]
= 〈σz

1 σ
z
m〉 ρ

ǫ′1 ,...,ǫ
′
m

ǫ1 ...ǫm
=

∫
C
G (λ1, . . . , λm) dmλ

• Small m separation of integrals ρ (’03 Boos, Korepin, Smirnov ; ’06 Sato, Shiroishi,
Takahashi )

〈σz
1σ

z
3〉 =

1
3
−

16
3

ln 2 + 3ζ (3)

• Free fermionic structure & algebraic separation of integrals at generic m
( ’04-’08 Boos, Jimbo, Miwa, Smirnov, Takeyama )

K. K. Kozlowski Asymptotic behaviour of correlation functions.
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Going beyond the free-fermion point: The Bethe Ansatz approach

• Solution of the inverse problem (’99 Kitanine, Maillet, Terras )

• Numerics: dynamical structure factors (XXZ, NLSM) S (q, ω) = F [〈j (x , t) j (0, 0)〉T ] (ω, q)
( ’05 Caux, Hagemans, Maillet ’06 Caux, Calabrese, Slavnov )

• Series of mult. int. for 2 pt. functions ( ’00-’05 Kitanine, Maillet, Slavnov, Terras )

〈σz
1σ

z
m+1〉 =

+∞∑

n=1

q∫

−q

F
(n)
m (µ1, . . . , µn) dnµ

• Long-distance asymptotics ∆ , 0 from first principles (’08 KKMST )

• Long-distance & large-time asymptotics (’11 K., Terras )
〈
j(x , t)j(0, 0)

〉
=

1
2
∂2
β
∂2

xQ
(β)(x, t)

Q(β)(x , t) = Q(β)asym(x , t) +
∑

n≥1

∑

{ǫt }

∫

C{ǫt }

Hn;ǫt (x, t; {zt}) dnzt

︸                          ︷︷                          ︸
structure asymptotic series

K. K. Kozlowski Asymptotic behaviour of correlation functions.



Motivations, results
Results following from the restricted sum approach

The form factor approach to the asymptotics
Conclusion

The large-distance asymptotics
The large-distance and long-time asymptotics
The edge exponents

Long-distance asymptotics of densities at T = 0K
’11 Kitanine, K., Maillet, Slavnov, Terras

density-density correlation function of the NLS model at T = 0K :

〈
G.S.

∣∣∣ j(0, 0)j(x ,0)
∣∣∣G.S.

〉
〈
G.S.

∣∣∣G.S.
〉 = 〈j(0, 0)〉2 −

Z2

2π2x2
(1 + o (1)) +

+∞∑

ℓ=1

2 cos (2xℓpF)

x2ℓ2Z2
· |Fℓ |

2 (1 + o (1))

|Fℓ |
2 = lim

L→+∞

(
L
2π

)2ℓ2Z2
∣∣∣∣
〈
G.S.

∣∣∣ j(0, 0)
∣∣∣umkp

〉∣∣∣∣
2

∣∣∣
∣∣∣G.S.

∣∣∣
∣∣∣2 ·

∣∣∣
∣∣∣umkp

∣∣∣
∣∣∣2

crrrrrrrrrrrrrrrrrrrrsR

−pF pF

∆P = 2pF ⋆ ground state in positive chemical potential

⋆ one Umklapp excitation ∆E = 0 ∆P = 2pF ." Confirms C.F.T./Luttinger liquid-based predictions." Agrees with RHP approach (’08 KKMST )." Similar results for XXZ.
K. K. Kozlowski Asymptotic behaviour of correlation functions.
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T=0K leading harmonics in long-time & distance asymptotics
to appear KKMST

Currents : j (x , t) ≡ eiHtΨ† (x)Ψ (x) e−iHt asymptotic regime x → +∞ and x/t fixed.

Overall structure of the asymptotic series (space-like regime):

〈
j (x, t) j (0, 0)

〉
=

(pF

π

)2
−
Z2

2π2

x2 + t2v2
F(

x2 − t2v2
F

)2
(1 + o (1))

+
∑

ℓ+ ;ℓ−∈Z
ℓ++ℓ−≤0

∗ eixℓ+pF

[−i(x − vF t)]
∆

(R)
ℓ+;ℓ−

e−ixℓ−pF

[i(x + vF t)]
∆

(L)
ℓ+;ℓ−

× e−i(ℓ++ℓ−)[xp(λ0)−tε(λ0)]
(

[p′ (λ0)]
2

−i[xp′′(λ0) − tε′′(λ0)]

) |ℓ++ℓ− |
2

2

·
(2π)

|ℓ++ℓ− |
2

∣∣∣F (j)
ℓ+,ℓ−

∣∣∣2

G
(
1 +

∣∣∣ℓ+ + ℓ−
∣∣∣
) (1 + o (1)) .

⋆ λ0 Saddle-point of the oscillating phase: p′(λ0) − tε′(λ0) /x = 0.

 p dressed momentum & ε dressed energy.
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Form factor interpretation of the amplitudes

∣∣∣F (j)
ℓ+ ,ℓ−

∣∣∣2 = lim
L→+∞



(
L
2π

)|ℓ++ℓ− |
2+∆

(R)
ℓ+;ℓ−

+∆
(L)
ℓ+;ℓ−

·

∣∣∣∣
〈
G.S.

∣∣∣ j (0)
∣∣∣Ex(ℓ+; ℓ−)

〉∣∣∣∣
2

∣∣∣
∣∣∣G.S.

∣∣∣
∣∣∣2 ·

∣∣∣
∣∣∣Ex(ℓ+; ℓ−)

∣∣∣
∣∣∣2



⋆ ℓ+: # additional particles at q ℓ−: # additional particles at −q |ℓ+ + ℓ− |: # particles at
λ0

bbbrrrrrrrrrrrrrrrrrbb rrrrrr
�-

−(ℓR +ℓL )

−q q λ0
⋆ ground state in positive chemical potential

⋆ excitation


∆E = |ℓ+ + ℓ−|ε(λ0)

∆P = |ℓ+ + ℓ−|p(λ0) − |ℓ+ |pF − |ℓ− |(−pF )

�-

−ℓ−

�-

−ℓ+

Critical exponents ∆
(R/L)
ℓ+;ℓ−

originate from excitations on Fermi boundaries.

∆
(R)
ℓ+;ℓ−

= (ℓ+ + ℓ−)φ(q, λ0) − ℓ−φ(q,−q) − ℓ+φ(q, q)
(
I −

K
2π

)
· φ(λ, µ) = θ(λ − µ)

Critical exponent
|ℓ+ + ℓ− |

2

2
originates from gaussian saddle-point." Agrees with the first terms obtained through Natte series (’11 K., Terras).

K. K. Kozlowski Asymptotic behaviour of correlation functions.
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The power-law behavior of Fourier transforms (NLSM)

to appear KKMST (to appear)

(k , ω) configuartion close to the hole excitation line

(pF − p(λ0) ,−ε(λ0)) with λ0 ∈ ]−q ; q [ .

⋆ The hole treshold

S
(
pF − p(λ0),−ε(λ0) + δω

)
≃

Ξ(δω) [δω]
∆

(R)
1;0 + ∆

(L)
1;0−1

[v + vF ]
∆

(R)
1;0 [vF − v]∆

(L)
1;0

·
(2π)2

∣∣∣F (j)
1,0

∣∣∣2

Γ(∆
(R)
1;0 +∆

(L)
1;0 )
.

⋆ v : velocity of the hole at λ0 vF : velocity excitations on Fremi boundary.

∣∣∣F (j)
1,0

∣∣∣2 = lim
L→+∞



(
L
2π

)1+∆
(R)
1;0 + ∆

(L)
1;0

∣∣∣∣
〈
G.S.

∣∣∣ j (0)
∣∣∣Ex

〉∣∣∣∣
2

∣∣∣
∣∣∣G.S.

∣∣∣
∣∣∣2 ·

∣∣∣
∣∣∣Ex

∣∣∣
∣∣∣2



rrrrrrrrrrrrrr rrrrsc
^

−q qλ0

⋆ ground state

⋆ excitation

{
∆E = −ε (λ0)
∆P = pF − p(λ0)
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(k , ω) configuartion close to the particle excitation line

(p(λ0) − pF , ε(λ0)) with λ0 ∈ ]q ; +∞ [ .

⋆ The particle treshold

S
(
p(λ0) − pF , ε(λ0) + δω

)
≃

[δω]
∆

(R)
−1;0 + ∆

(L)
−1;0−1

[v + vF ]
∆

(R)
−1;0 [vF − v]∆

(L)
−1;0

·
(2π)2

∣∣∣F (j)
−1,0

∣∣∣2

Γ(∆
(R)
1;0 +∆

(L)
1;0 )

×
Ξ(δω) sin

[
π∆

(L)
−1;0

]
+ Ξ(−δω) sin

[
π∆

(R)
−1;0

]

sin π
[
∆

(R)
−1;0 +∆

(L)
−1;0

]" Microscopic model approach the non-linear Luttinger-based predictions.
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Motivations, results
Results following from the restricted sum approach

The form factor approach to the asymptotics
Conclusion

The form factor approach

Form factor expansion for finite L of O (x , t) ≡ eiHtO (x) e−iHt

〈G.S. |O (x , t)O† (0, 0) |G.S. 〉 =
∑

{µ}ex

〈G.S. |e−ixP+itHO (0, 0) eixP−itH | {µ}ex 〉〈 {µ}ex |O
† (0, 0) |G.S. 〉

=
∑

{µ}ex

eix(PexPG.S.)−it(Eex−EG.S.)
∣∣∣〈G.S. |O (0, 0) | {µ}ex 〉

∣∣∣2

presumed steps of the computation
Characterize the excitations above the ground state;

Asymptotic in size L formula for 〈G.S. |O(0, 0)| {µ}ex 〉;

Localize sums at stationary-points: saddle-point, ends of Fermi zone ;

Sum-up in the asymptotic regime.

K. K. Kozlowski Asymptotic behaviour of correlation functions.



Motivations, results
Results following from the restricted sum approach

The form factor approach to the asymptotics
Conclusion

Conslusion and perspectives

Review of the results" Leading asymptotics of any harmonic in long-distance ;" All harmonics in long-distance and large-time for pure particle-hole spectrum ;" Reproduction of edge exponents with amplitudes from ABA ;

Next possible extensions

⊛ Include the effects of bound states (time dependent case) .

K. K. Kozlowski Asymptotic behaviour of correlation functions.
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