

Search for a light SM Higgs with ATLAS

Lorenzo Feligioni LPC Clermont-Ferrand 21/03/2008

- Introduction
- Higgs Phenomenology at the LHC
- Experimental Setting
- Light Higgs Searches
 - <u>Benchmark Analyses:</u>
 - VBF (H→ττ)
 - H*→*үү
 - ttH(H→bb)
- b-tagging calibration using first data
- Conclusions

most presented results come from a recent effort on on re-evaluating ATLAS discovery potential (a.k.a. CSC) soon to be published

- Many theoretical arguments predict a Higgs mass at the TeV scale:
- WW scattering violates unitarity if only Z/γ are exchanged
 - For Higgs to be able to restore it at any s: $G_F m_H^2 \sim < O(1)$

- Electroweak precision measurements
 - SM Higgs field contributes to radiative corrections for many EW observables
 - Fits of SLC, LEP and Tevatron EW measurements constrain $\rm m_{\rm H}$
- Latest results Winter 2007
 - $m_{H} = 76^{+36}_{-24}$ GeV
 - From EW fits only:
 - m_H<144 GeV @ 95% C.L.
 - Including LEP-2 direct searches $m_{\rm H}$ < 182 GeV @ 95% C.L.
- ⇒ Light Higgs favorite scenario

Current Experimental Limits

- LEP m_H>114.4 GeV @95% CL
- Tevatron RunII combined results:
 - W(\rightarrow Iv)H(\rightarrow bb,WW), Z(\rightarrow II,vv)H(\rightarrow bb), H \rightarrow WW
 - Update includes more final states
 - Η→γγ, Η→ττ

ď

a

Vector Boson Fusion:

CPP

- small K factor ~ 1.1
 - Small jet multiplicity in final state

a

- No color exchange between guarks —
 - large energetic jets at small p_τ
 - Low hadronic activity in central region from hard event
 - a part from Higgs decay
- Production with Gauge boson:
 - Known NNLO for OCD and EW corrections
- Production with heavy quarks:
 - More complicated final state
 - -**....** More than 10 diagrams, known at NLO

Higgs Decay

- Light Higgs $(110 < m_H(GeV) < 130)$
 - Dominant mode is $H \rightarrow bb$ (75-50%)
 - $H \rightarrow \tau \tau$ and cc with 3--7%
 - Higgs decay to γγ through loop of massive particle ~ few permil
 - $H \rightarrow VV^{(*)}$ rises close to 130 GeV
- Intermediate Higgs $(130 < m_H (GeV) < 180)$
 - $H \rightarrow VV^{(*)}$ most important decay mode
 - $H \rightarrow ZZ^{(*)}$ decreases when 2 on shell W bosons can be produced 0.0001
- <u>Heavy Higgs</u> ($180 < m_H(GeV) < 1000$)
 - H→VV
 - For $m_H \sim 400$ GeV the decay in two top quarks also plays a role
- All BR calculated at NLO, error within few %

Experimental Setting

LHC:

- Proton-Proton collisions @ 14 TeV
- First run in 2008 (10 TeV?)
- Luminosity:
 - Low luminosity $\sim 10^{33}$ cm⁻²s⁻¹
 - ⇒ ~ 30 fb⁻¹ between 2008 and 2010/2011
 - High Luminosity $\sim 10^{34}$ cm⁻²s⁻¹ $\Rightarrow \sim 300 \text{ fb}^{-1} \text{ by } 2014/2015$
- Pile-up:
 - ~ 2 (low luminosity) to 20 (high luminosity) pp interactions ("minimum bias") per bunch crossing (every 25 ns)
- Trigger to go from 40 MHz interaction rate to ~200Hz to disk for offline analysis

ATLAS:

Powerful $e/\gamma/\mu/\tau/b$ identification

- Photon ID: eff~80%, R(jet)~10³
- Electron ID: eff~80%, R(jet)~10⁵
- b ID: eff~60%, R(light jet)~100
- $\tau \rightarrow$ hadrons: eff~50% R(jet)~100

Good energy measurement of $e/\gamma, \mu$, jets

- ~1-2% for p_T(e)~25-50 GeV
- 5% initial JES scale uncert (aimed at 1% after in situ calibration)

It's time for the Pixels for final cabling and testing old picture, from last July, when the Pixels were installed...

Benchmark Analyses

- VBF (H→ττ)
- Н→үү
- ttH(H→bb)

- Signal:
 - $qqH \rightarrow qq\tau\tau$
 - Forward tagging jets:
 - energetic jets at high $\boldsymbol{\eta}$
 - No color flow between initial partons
 - No jet radiation
 - Central Jet Veto
- Backgrounds:
 - QCD Z/γ + jet
 - Big cross section at LHC
 - Central jet veto reduce this background by 70%
 - Veto can be checked in $Z \rightarrow ee(\mu\mu)$ events (no signal)
 - top quark:
 - Presence of b-quark can mimic signal even at LO
 - In tracker fiducial region b-tag veto

<u>VBF: H→ττ</u>

- Analysis:
 - 2 tagging jets
 - Higgs decay products in central region between tagging jets
 - Jet veto
 - Final states with two central τ 's
 - 1. Dilepton decay
 - 2. lepton-hadron decay
 - 3. Hadron-hadron decay
 - $M(\tau\tau)$ reconstruction:
 - Use missing transverse momentum + collinear approximation of τ decays
 - Resolution limited by missing E_{T}
- Low Luminosity Analysis
 - Jet veto sensitive to pile-up effects

Probability of finding a central Jet as a function of p_T treshold For different luminosity

VBF: background estimation

- Progress have been made on data driven background estimation
- Z→ττ mass shape is fundamental in order to extract signal in the highside tail
 - Mis-measurement of missing transverse energy
 - Correlated to effects due to presence of high eta tagging jets
 - Extracted from $Z \rightarrow \mu\mu$ +jets events
- QCD background in lep-hadron channel
 - QCD contribution for τ-candidates extracted from track multiplicity
- Global fit of M(ττ) and background contributions
 - with no pile up indication of discovery with 30 fb⁻¹ in m_H 115-130 GeV

Track density around τ-candidates

- Looking for a mass peak:
 - two high p_{T} photons
- $m_{\gamma\gamma}^2 = E_1 E_2 (1 \cos \vartheta_{12})$
 - Low mass: intrinsic width negligible
- Recovery of conversion
 - ~60% conversion in the tracker: possibly reconstructed

Irreducible background:

- Diphoton background:
 - now computed at NLO
 - Computation agrees with Tevatron data

• Reducible Background:

- Large cross section
 - Isolation criteria:
 - Need good π^0 rejection
 - π^0 tend not to take all parton energy

0.3 0.4 0.5 0,6 0.8 0.7 0.9 momentum fraction

Jets in γ /jet events initiated by quarks \Rightarrow higher fake rate

Efficiency

• Photon identification cuts

CPR

- Isolated π⁰ main source of background
- Among shower shapes variables:
 - transverse size in 1st EM layer
 - Search for a second max in $\boldsymbol{\eta}$
- Photon reconstruction and calibration
 - Converted photon ⇒ bigger cluster
 - opening of the two electron due to the magnetic field
 - Two categories of converted photons
 - double track conversion
 - reconstructed vertex
 - Single track conversion
 - no innermost pixel layer hits $^{0.4}_{0.3}$
 - Efficiency for early conversion of about 66%

Diphoton invariant mass for 30 fb-1

- Different analysis categories
- Inclusive analysis:
 - Selection:
 - p_T(γ)>40(25) GeV
 - |η|<2.5

CPE

- Higgs + 1 jet production:
 - radiation mechanism differs for sig and bkgd
 - Selection:
 - p_T(γ)>40(25) GeV
 - |η|<2.5
 - 1 jet p_T >20 GeV, $|\eta|$ <5
 - $M_{\gamma jj}$ > 350 GeV
- Higgs + 2 jet production:
 - main contribution from VBF
 - Selection:
 - p_T(γ)>50(25) GeV
 - |η|<2.5
 - 2 jets p_T >20 GeV, $|\eta|$ <5 in opposite emispheres
 - $M_{\gamma\gamma} > 500 \text{ GeV}$
 - $\gamma\gamma$ between jets in η

H→yy analysis categories

- Unbinned maximum likelihood fit used to extract signal and background
 - 3 photon pseudorapidity regions with different diphoton mass resolution
 - Events with different jet multiplicity
 - Kinematic quantities ($\cos\theta^*$, p_{TH})
 - Floating Higgs mass value

Fitted diphoton resolution

<u>Distribution of cos θ^*_{-} , p_{TH} for different</u> <u>jet multiplicity</u>

- $ttH(\rightarrow bb)$: possible discovery and measure of top Yukawa coupling
 - All hadronic final state has higher branching fraction:
 - more difficult trigger
 - Semileptonic final state $\sigma \cdot \text{BR}{\sim}100~\text{fb}$ (LO)
 - isolated lepton

CPE

- Missing energy
- \geq 6 jets, \geq 4 jets b-tag
 - need large b-tagging efficiency: signal $\alpha(\epsilon^4{}_b)$
- In general high jet multiplicity:
 - Large contribution of ISR/FSR
 - \Rightarrow difficult to simulate
- \Rightarrow Reducible Background:
 - tt σ~830 pb (NLO+NLL)
 - Larger background
 - b-tagging must be optimized to have strong light jet rejection
 - WWbbjj, Wjjjjjj
 - discriminated by reconstructing tt pairs
- \Rightarrow Irreducible background:
 - ttbb (EW/QCD) σ ·BR~2500 fb (LO)
 - slight differences in kinematic properties w.r.t ttH
 - could be discriminated using likelihood functions

b-tagging SV1+IP3D performance

- Performances heavily dependent on jet p_T and η
 - Need to know the dependency in order to understand the impact on shapes
- For the ttH analysis b-tag weight is rescaled in order to give 30% less light jet rejection
 - take into account effect of residual misalignment
 - First estimate with real alignment procedure!

- Three different analysis strategies share the same pre-selection in order to isolate tt+jets events
- Main difficulty of the analysis is to identify b-jets coming from Higgs decay
 - high combinatorial background need for multivariate analysis

• Normally affected by large systematics

cut	ttH (fb)	ttbb EW (fb)	ttbb QCD (fb)	ttjj (fb)
1 Lepton	56.9	141	1356	63710
+ 6 jets	36.2	76.7	665	26214
+ 4 b-jets loose	16.2	23.4	198	2589
+ 4 b-jets tight	3.76	4.2	29.6	50.7

- First step: W boson reconstruction
 - Hadronic W candidates are formed with non b-tagged jets
 - many extra jets ⇒ large combinatorial bckgd
 - Mass window cut applied
 - Leptonic W reconstruction:
 - force $M(I_v)$ to W mass in order to solve for the $p_z(v)$

correct combinations shown in red

Starting from W candidates and btagged jets in the event top quark candidates are reconstructed

- cut on
$$|m_{reco} - m_{true}| < 25 \text{ GeV}$$

Final combination minimizes χ^2 :

$$\chi^2 = \left(\frac{m_{jjb} - m_{top}}{\sigma_{m_{jjb}}}\right)^2 + \left(\frac{m_{lvb} - m_{top}}{\sigma_{m_{lvb}}}\right)^2$$

- The two remaining b quarks are used to reconstruct the Higgs candidates
- Statistical significance calculated after mass window cut
 - 30 GeV from nominal Higgs mass
- $S/\sqrt{B=1.8}$
- Problem of tt+jets statistics ullet
 - generated 1M fully simulated events

Constrained fit analysis

• Fit constrained of the jet momentum and missing transverse energy

$$\chi^{2} = \sum_{i=1}^{6} \left(\frac{f_{jet}^{i} - 1}{\sigma_{jet}^{i} / P_{jet}^{i, initial}} \right)^{2} + \frac{(m_{W}^{lep} - 80.425)^{2}}{\sigma_{W}^{2}} + \frac{(m_{t}^{lep} - 175)^{2}}{\sigma_{t}^{2}}$$

- 2 likelihood used
 - 1^{st} pairing likelihood used χ^2 of the fit and other 14 kinematic variables
 - 3D likelihood used in order to take into account the correlations
- Final selection likelihood used to separate signal and physics background
- $S/\sqrt{B}=2.18$

0.035

Efficiency

0.03

Performance comparison

Ð	Multivariate analysis increase
	Higgs candidates purity by
	~5%:

CPI

- Wide signal mass spectrum —
- No clear signal peak over background
- Combinatorial background dilute kinematic differences between ttH and ttbb

0.65 ملين 0.6 ملين 0.55 ملين

0.015

0.02

0.025

	Cut-based	Likelihood	Constrained fit
Signal efficiency (%)	2.04	2.32	2.49
bb purity (%)	29.4	34.0	32.0
bb mass peak resolution (GeV)	22.8	20.1	22.3
s/b	0.110	0.103	0.123
s/sqrt(b)	1.82	1.95	2.18

0.005

0.01

Background summary of major systematic uncertainties

	Cut- based	Likelihood	Constrained fit	cance
JES	5%	14%	8%	signific
Jet resolution	7%	5.5%	14%	total
b-tagging efficiency	20%	20%	20%	
Light jet rejection	5%	3%	10%	
All	22%	25%	28%	

- 5% uncert on JES, 5% on b-tag eff, 10% on light rejection.
- Main effects come from jet related uncertainties
 - Straight propagation gives decrease in significance to ~0.5
- Need for data driven background shape estimation
 - Crucial for the analysis
 - Indication of shape background independent from b-tag cut
 - Loose b-tag analysis depleted of signal to constrain shapes and normalizations

Loose analysis depleted in signal

Background summary of major systematic uncertainties

	Cut- based	Likelihood	Constrained fit	cance
JES	5%	14%	8%	1 signific
Jet resolution	7%	5.5%	14%	total 1
b-tagging efficiency	20%	20%	20%	0
Light jet rejection	5%	3%	10%	0
All	22%	25%	28%	

- 5% uncert on JES, 5% on b-tag eff, 10% on light rejection.
- Main effects come from jet related uncertainties
 - Straight propagation gives decrease in significance to ${\sim}0.5$
- Need for data driven background shape estimation
 - Crucial for the analysis
 - Indication of shape background independent from b-tag cut
 - Loose b-tag analysis depleted of signal to constrain shapes and normalizations

Background shape does not depend upon B-tag cut

29

<u>towards first data:</u> <u>b-tagging calibration</u>

b-tagging calibration: dijet

source of systematic uncertainties

b-tagging calibration: dijet

n

- Non-linear system (System8 à la D0):
 - 2 samples

CPI

- Muon Jets (n)
- MJ + other tag opposite jet Jet (p)
- 2 different b/l fractions: n_b, p_b
- 2 non-correlated taggers:
 - Tracks (IP3D+SV1) ϵ^{LT}
 - Soft Muon (pTrel/pT likelihood): ϵ^{SMT}
- ➔ system can be solved analytically

$$n = n_b + n_{cl}$$

$$p = p_b + p_{cl}$$

$$n^{LT} = \alpha_6 \epsilon_b^{LT} n_b + \alpha_4 \epsilon_{cl}^{LT} n_{cl}$$

$$p^{LT} = \epsilon_b^{LT} p_b + \epsilon_{cl}^{LT} p_{cl}$$

$$n^{SMT} = \alpha_5 \epsilon_b^{SMT} n_b + \alpha_3 \epsilon_{cl}^{SMT} n_{cl}$$

$$p^{SMT} = \epsilon_b^{SMT} p_b + \epsilon_{cl}^{SMT} p_{cl}$$

$$n^{both} = \alpha_1 \alpha_5 \alpha_6 \epsilon_b^{LT} \epsilon_b^{SMT} n_b + \alpha_2 \alpha_3 \alpha_4 \epsilon_{cl}^{LT} \epsilon_{cl}^{SM}$$

$$p^{both} = \alpha_1 \epsilon_b^{LT} \epsilon_b^{SMT} p_b + \alpha_2 \epsilon_{cl}^{LT} \epsilon_{cl}^{SMT} p_{cl}$$

 $\alpha 's$ correlation parameters evaluated in MC: source of systematic uncertainties

Results using simulated moun jets

Tagger	Weight cut	Measured ϵ_b	$ \Delta_{meas.,true} $
	w > 4	0.747 ± 0.036	0.002
IP3D + SV1	w > 7	0.611 ± 0.032	0.012
	w > 10	0.441 ± 0.037	0.043
IP2D	w > 3	0.644 ± 0.033	0.009
	w > 4	0.550 ± 0.029	0.007
$T_{n_{cl}}$			

dijet: results for 100 pb⁻¹

- Dedicated trigger are necessary lacksquarein order to obtain the required number of muon-jets
- L1 muon+jets trigger used although heavily prescaled

CPF

- for 10^{31} a trigger for $p_T(\mu) > 6$ GeV and $p_T(jet) > 10$ GeV prescaled by a factor 100
- Need to go low on p_{T} for system 8 studies
- Need to achieve high purity lacksquare
 - matching jet muon can be implemented at L2
 - muon jet purity ~ 80%
- Combination of jet tresholds used • in order to have flat jet p_{T} spectrum
- Folding trigger in system 8 results allows to estimate achievable error with 50 or 100 pb⁻¹ data
 - order of 3-5% in bin of p_{T} and η

pT distributions of mu+jet

Total efficiency error for (50) 100 pb⁻¹

b-tag performances from tt

CPI

- Select semileptonic ttbar events
 - Reconstruct $m_{\rm bjj}$ on hadronic side from 'raw' jet energies, cuts on $m_{\rm W}$ and $m_{\rm top}$
 - Require b-tag on b-jet, anti-b on W jets
- Use recon mass of leptonic top (m_{blv}) to find region enhanced in b-jets
 - No requirement on b-tag of this jet
 - Leptonic top ensures jets are b-flavour
- Have to subtract background from mis-reconstructions
 - Estimate shape from a control sample where hadronic side m_{bjj}>200 GeV, and leptonic top jet is anti b-tagged
 - Estimate flavour composition from signal sample where m_{blv} outside $m_{top} \pm 2\sigma$ (mass sideband region)

<u>Results of the fit with full statistics</u> <u>948 pb⁻¹</u>

- This method allow to select b-jets with a very high purity
 - compatible with 100% for p_T >40 GeV
- In general good results for relatively energetic jets
 - $p_T > 40 \text{ GeV}$
- Limited statistics at high energy could also be a problem
- Method tested on several integrated luminosity
 - converge for L>200pb⁻¹
- Relative statistical error of 6.4%.

Systematic	Topological
Light jets and τ	0.5
Charm jets	0.7
Jet energy scale	0.5
b-jet labelling	-
MC generators	0.2
ISR/FSR	1
W+jet background	2.8
Single top background	1.2
Top quark mass	-
Total systematic	3.4
Statistical (100 pb ⁻¹)	-
Statistical (200 pb ⁻¹)	6.4

- ATLAS work of re-evaluation of Light Higgs sensitivity almost completed
 - New studies used realistic detector simulation
 - more challenging
 - possibility of developing data driven background estimation
- Light Higgs boson remains the most difficult scenario
- Three main channels can be used together to ensure discovery
 - $H \rightarrow \gamma\gamma$: most established analysis
 - VBF: distinct signature
 - ttH: most challenging needs data driven background estimation
- For all this channels will be crucial the work coming in the next months towards the understanding of the detector performance and systematic uncertainties
 - New calibration technique have been tested to be effective from early data
 - b-tagging calibration from di-jets and top quarks
- ATLAS is finally entering a new phase concentrating on looking and understanding the first collisions