### **WP4**

Isotope radio-purity assessment with external source approach

# The BiPo detector

# Measure the purity in <sup>208</sup>Tl and <sup>214</sup>Bi of the SuperNEMO ββ source foils

Required sensitivity:  $^{208}Tl < 2 \ \mu Bq/kg \quad and \quad ^{214}Bi < 10 \ \mu Bq/kg$ 

Best limits for NEMO-3 foils measurement with HPGe:  $A(^{208}Tl) < 100 \ \mu Bq/kg$ 

### Principle of BiPo detection



Sandwich of two low radioactive thin polystyrene plastic scintillators **Time topology signature:** 1 hit + 1 delay hit (and no coincidence)



### Sources of background



### R&D Program

2007-2009: R&D program, funded by ANR

Development of 3 prototypes using different designs

✓ BiPo-1 prototype

✓ BiPo-2 prototype

✓ BiPo-1 phoswich (IFIC Valencia)

# BiPo-1 prototype

20 modules of  $20 \times 20 \times 0.3$  cm<sup>3</sup> scintillators Total surface = 0.8 m<sup>2</sup> running in LSM Modane







- ✓ Polystyrene based scintillators produced in JINR Dubna
- ✓ Surface machining in LAL
- ✓ Ultrapure aluminium sputtering in IPN Orsay
- ✓ Low radioactive 5" Hamamatsu PMTs

Mathieu Bongrand's thesis

Results published in *N.IM. A 622 (2010) 120-128* 

### Validation of the detection efficiency

#### Measurement of a calibrated aluminium foil

Activity measured with HPGe  $\gamma$  spectroscopy: A(<sup>212</sup>Bi $\rightarrow$ <sup>212</sup>Po) = 0.19 ± 0.04 Bq/kg



# $e^{-/\alpha}$ pulse shape discrimination

- ✓ High dE/dx for  $\alpha$  enhances the slow component of the scintillation decay curve
- ✓ Already known in liquid scintillator
- $\checkmark$  Observed here also in plastic scintillator

### Measurements with (prompt e<sup>-</sup>, delayed $\alpha$ ) sample from aluminium foil



### Background measurement

Channel <sup>212</sup>Bi  $\rightarrow$  <sup>212</sup>Po for <sup>208</sup>Tl (<sup>232</sup>Th) measurement

Background has been measured during 488 days in Modane (Dec. 2007 – Jul. 2009)

12 BiPo-1 modules  $\equiv$  detector surface area of 0.48 m<sup>2</sup>

30<sup>212</sup>Bi<sup>212</sup>Po events observed



#### Channel <sup>214</sup>Bi $\rightarrow$ <sup>214</sup>Po for <sup>214</sup>Bi (<sup>238</sup>U) measurement

Radon contamination observed in BiPo-1

A(Radon) ~ few tens of mBq/m<sup>3</sup>

Origins: emanation of PMTs, Radon purity of the gas...

 $\Rightarrow$  Will require a dedicated Radon tightness design for BiPo-3

Part of  ${}^{212}Bi \rightarrow {}^{212}Po$  bkg events may be due to Radon bkg. I hope so !...

# BiPo-3 detector

(Canfranc Underground Laboratory)

- $\checkmark$  Total active area = 3.6 m<sup>2</sup>
- ✓ Detector composed of **2 modules**
- ✓ Each module is an array of **40 optical sub-modules**

Optical sub-modules = thin aluminized scintillators coupled via PMMA optical guides to 5" low-radioactive PMT

 $\Rightarrow$  Total of 80 PMTs + Optical guide + scintillators

#### ✓ Scintillators:

- ✓ Polystyren based, size: 300×300×2 mm<sup>3</sup>
- $\checkmark$  Produced by JINR Dubna and machined in France under N $_2$  flush
- ✓ entrance active face **aluminized** with 200nm of ultra pure Aluminium



BiPo-3 module



Two optical sub-modules

# BiPo-3 sensitivity

Assuming: <sup>82</sup>Se foil 40 mg/cm<sup>2</sup>

Total surface BiPo-3 =  $3.6 \text{ m}^2$ 

Energy threshold = 100 keV for prompt and delay signals ( $\epsilon \sim 5\%$ )



Number of expected <sup>212</sup>BiPo bkg event in BiPo-3 (assuming surface bkg as in BiPo-1) ~ 4.5 events/month with <sup>82</sup>Se foil (~14 events w/o foil)

The main systematic in BiPo is the correct knowledge of the "surface" background

 $\Rightarrow$  Long background measurement

 $\Rightarrow$  Avoid surface contamination when the Se foil is introduced inside the detector

10

# BiPo-3 prototype in Canfranc

#### Random coincidence background

- measure the single counting rate with different  $\gamma$  shields
- choice of the scintillator thickness

### > TI and Bi surface background

- validation of the new aluminium evaporation chamber
- validation of the new scintillator surface machining

### > Radon background



Radon strongly suppressed A(Radon) < 1mBq/m<sup>3</sup> when pure N2 is flushed with flux ~ 1 vol/hour (~ 200 l/h for total BiPo3 detector)



### Assembly and test of the 80 optical sub-modules



Light guide annealing



Gluing of the scintillator



aluminization



PMT gluing



Tyvek wrapping



Black film



Light black box



80 optical modules assembled



# Assembly of the 1<sup>st</sup> BiPo-3 module in LAL Orsay



# Assembly of the 1st BiPo-3 module in LAL Orsay

1 – Implementation of light boxes and connexion gas PMT



4 – Adjustment of plan of scintillator with down support



7 – Setting of 20 light boxes Implementation of : - cables - optical fibers



2 – Set of EVOH film



5 - Implementation of up light lines



- 3 Implementation of down light lines And implementation of : - cables, - optical fibers
  - connexion gas





6 - Set of EVOH film

> 8 – Setting up of frame with monorail Set up of supports and connexion gas



# Design of the shield



# Operation in Canfranc Undergorund Lab.



### BiPo-3 Schedule

- 1<sup>st</sup> July 2012 : installation of the 1<sup>st</sup> BiPo-3 module in Canfranc
- Summer 2012: start measuring the bkg of the 1<sup>st</sup> module
- Oct. 2012: installation of the 2<sup>nd</sup> BiPo-3 module in Canfranc
- Fall 2012: background measurement of the two modules
- Year 2013: measurement of SuperNEMO <sup>82</sup>Se foils

Possibility later to measure other thin materials like polyethylen film (used to screen copper surfaces) or reflecting films (used in scintillating bolometers)  $\Rightarrow$  could reach a sensitivity of ~10 µBq/kg in <sup>208</sup>Tl

# BACKUP

#### Initial design of the shield



### BiPo-3 detector

#### Welded mechanical structure (radiopure iron) built in LAL Workshop



Inner volume closed by EVOH+polyethylene film flushed by LSC N<sub>2</sub> to suppress Radon background





Shield: low active Pb Inside stainless steal tank (tightness)

### PMT's readout and acquisition

#### > PMT signals sampled with MATACQ VME digitizer boards (LAL & IRFU)

0000

- 4 channels, 2.5ms time window
- 1 GS/s high sampling rate
- 12-bit amplitude resolution
- 1 Volt amplitude dynamic range
- Electronic noise ~  $250 \,\mu V \,(r.m.s.)$

#### ≻ Trigger (LAL)

- $\bullet$  MATACQ sampling of the PMT signal during 1.5  $\mu s$
- Dead time during 10  $\mu$ s  $\Rightarrow$  avoid false trigger on PMT delay noise
- Start watch dog
- MATACQ sampling of the PMT signal during 1 ms in case of a 2<sup>nd</sup> trigger
- IQR generated after 1 ms





#### Acquisition developed by LPC Caen

# BiPo-2 prototype

- Two scintillators plates (molding production, Bicron BC-408)  $\Rightarrow$  S = 75×75×1 cm<sup>3</sup> (0.56 m<sup>2</sup>)
- Scint. light collected by total internal reflectivity
- Read out on two opposite lateral sides of each plate with 3" radiopure PMT's  $\Rightarrow$  20 PMT's



Possible advantages:

- > Molded plate: no treatment of the entrance surface of the scintillators plates
- Same-side BiPo events could be used
- > Random coincidence can be reduced if good resolution for the location of the event

# BiPo-2 prototype

Detection efficiency measured with aluminium foil in Modane

Efficiency BiPo-2 ~ BiPo-1 for back-to-back events Efficiency can be increased if we use same-side events



#### BUT:

- ✓ Modest energy threshold ~ 100 keV
- ✓ Optical cross-talk ~ few 10 keV



- ✓ Spatial resolution : 90% of delayed  $\alpha$  reconstructed with distance < 10 cm from prompt e<sup>-</sup> ⇒ random coincidence ~ 4 times higher than BiPo-3
- ✓ No e<sup>-</sup>/ $\alpha$  discrimination (due to a relatively too low light collection)

It has been decided to extrapolate the BiPo-1 design for the large BiPo-3 detector