# ISOTTA ISOTope Trace Analysis

Advanced Techniques for the Production, Purification and Radio-Purity Analysis of Isotopically Enriched Sources for Double Beta Decay

Project coordinator

**CNRS** 

Andrea Giuliani - Centre National de la Recherche Scientifique, CSNSM, Orsay, France

Co-applicants

**CNRS (France)** 

INFN (Italy)

NCBiR (Poland)

Mathieu Bongrand – Centre National de la Recherche Scientifique, LAL, Orsay, France Oliviero Cremonesi – Istituto Nazionale di Fisica Nucleare, Sez. di Milano-Bicocca, Italia Ioan Dafinei – Istituto Nazionale di Fisica Nucleare, Sez. di Roma1, Italia Fernando Ferroni – Università la Sapienza, Roma, Italia Xavier Garrido - Université Paris-Sud 11, LAL, Orsay, France Jan Kisiel – University of Silesia, Katowice, Poland

Jerzy Wojciech Mietelski - H. Niewodniczanski Institute of Nuclear Physics, Krakow, Poland

Fabrice Piquemal - Centre National de la Recherche Scientifique, CENBG, Bordeaux, France

Stefano Pirro – Istituto Nazionale di Fisica Nucleare, Sezione di Milano-Bicocca, Italia

Ezio Previtali - Istituto Nazionale di Fisica Nucleare, Sezione di Milano-Bicocca, Italia

Xavier Sarazin - Centre National de la Recherche Scientifique, LAL, Orsay, France

Laurent Simard – Université Paris-Sud 11, LAL, Orsay, France

Jacek Szabelski – Andrzej Sołtan Institute for Nuclear Studies, Łodz, Poland

Marcin Wojcik - Institute of Physics, Jagiellonian University, Krakow, Poland

Agnieszka Zalewska – H. Niewodniczanski Institute of Nuclear Physics, Krakow, Poland

#### Associated partners

Ukraine

Russia

Germany

Kai Zuber – Technische Universität Dresden, Germany
Fedor Danevich – Institute for Nuclear Research, Kyiv, Ukraine
Roman. S. Boiko – Institute for Nuclear Research, Kyiv, Ukraine
Ruslan Podviyanuk – Institute for Nuclear Research, Kyiv, Ukraine
Vladimir Tretyak – Institute for Nuclear Research, Kyiv, Ukraine
Victor Brudanin – Joint Institute for Nuclear Research, Dubna, Russia
Dmitry Filosofov – Joint Institute for Nuclear Research, Dubna, Russia
Oleg I.Kochetov – Joint Institute for Nuclear Research, Dubna, Russia
Evgeny Yakushev – Joint Institute for Nuclear Research, Dubna, Russia

#### ISOTTA in a nutshell



Guidelines for the procurement of 1 ton of radiopure isotope for 0v-DBD within 3 years from the start

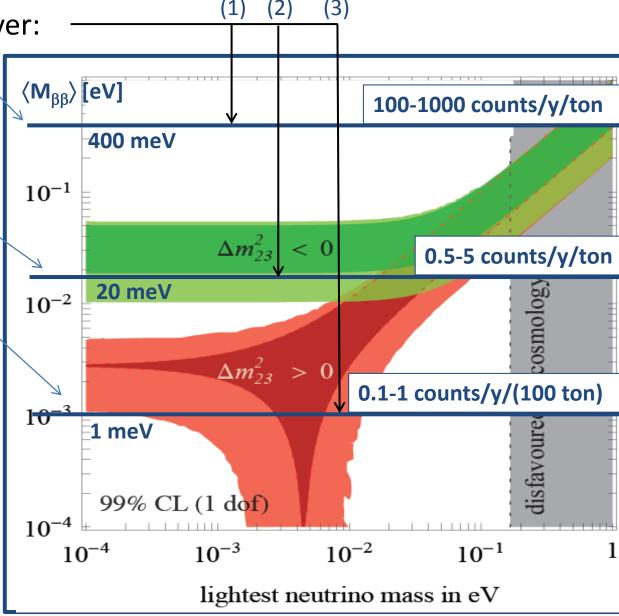
#### ISOTTA aims at:

- reviewing the existing isotope producers
- investigating new enrichment technologies
- identifying purification procedures
- developing techniques able to test the radiopurity of enriched samples at the level of few μBq/kg prefiguring final detectors



coordinated approach to the isotope problem, joining synergically the expertizes of the main European actors in the field

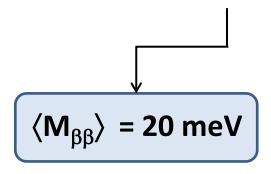
## **Current challenge in neutrinoless Double Beta Decay search**


**Three** hurdles to leap over:

**First**: scrutinize **Klapdor** and **approach inverted hierarchy region** (EXO-200, GERDA, CUORE, SuperNEMO, NEXT, KamLAND-ZEN, SNO+...)

Second: cover inverted hierarchy region (technically feasible but today no planned experiment can credibly do it)

Third: attack direct hierarchy region (beyond the reach of every conceivable technique at the moment)


ISOTTA aims at giving a substantial contribution to the second step



## **Necessity of enrichment at 1-ton scale**

Evaluation of the **expected signal rate** for several interesting isotopes (**counts /(5 y ton**) for three different nuclear calculations, **assuming**:

| Candidate         | pnQRPA | IBM-2 | ISM |
|-------------------|--------|-------|-----|
| <sup>76</sup> Ge  | 4.0    | 7.9   | 1.7 |
| <sup>136</sup> Xe | 4.8    | 12    | 3.9 |
| <sup>130</sup> Te | 9.4    | 17    | 5.6 |
| <sup>116</sup> Cd | 12     | /     | /   |
| <sup>82</sup> Se  | 7.3    | 21    | 6.9 |
| <sup>100</sup> Mo | 10     | 19    | /   |
| <sup>150</sup> Nd | /      | 24    | /   |



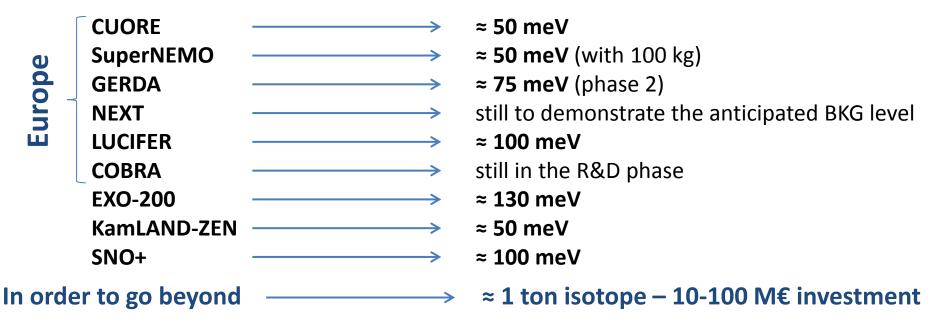
(approximately, lower bound of the inverted hierarchy region)

Just to have enough signal

ultrapure isotopically enriched material at the level of 1 ton is necessary

#### **ISOTTA** objectives

## Main objective


radio-purity of the final source) of a large amount (at the 100 kg – 1 ton scale) of isotopically enriched material for the performance of a next generation 0v-DBD experiment.

#### achieved through the following intermediate goals:

- Overview of the isotope producers
- Overview of possible innovative technologies for the isotope production
- Procurement of samples of isotopically enriched materials
- Development of techniques and facilities for the isotope radiopurity characterization with
  - **standard methods** (nuclear and mass spectroscopy)
  - **innovative methods**, prefiguring the structure of future 0v-DBD experiments: enriched materials already cast in the form of the sources foreseen for the future detectors (bolometric absorbers, thin foils, scintillators and semiconductors)
- development of purification methods by using combination of chemical (recrystallization) and physical (vacuum distillation, filtration, zone melting) approaches

## Urgency of the research proposed in ISOTTA

Current experiments, running or in construction, do not have the sensitivity to really attack the **inverted hierarchy region**:



It cannot be done without previous careful investigation of the enrichment process /purification methods / radiopurity level

ISOTTA proposes to start the preliminary work now in order to be ready within three years (when current experiments will have shed light on future approaches)

## ISOTTA strategy (1)

1 Focus the attention on **several** very interesting candidates

Q-value higher than 2615 keV (out of the bulk of gamma radioactivity)

Can be studied with:

- **Bolometric technique** (high energy resolution ≈ 3-5 keV FWHM)
- External source (tracko-calo) approach (full event reconstruction)

Only relevant  $\beta^+\beta^+$  candidate

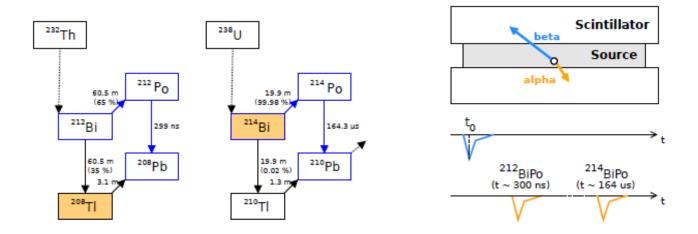
- 2 Procure samples of isotopes in the ISOTTA consortium
  - European Bank of Isotopes established inside ILIAS-FP6
  - Samples belonging to
    - the associated partner **Dubna**
    - the associated partner **Kiev**
    - the **CUORE** collaboration
    - the **LUCIFER** collaboration

## ISOTTA strategy (2)

3 Acquire small samples of isotopes with ISOTTA funding

- Develop and coordinate trace analysis techniques
- pre-screening investigation (ICP-MS, gamma/beta spectrometers)

  final investigation
   BiPo detectors
   Calorimetric detectors (scintillators charge-collection devices)
   (Scintillating) bolometers


Sensitivity at the level of a **few**  $\mu$ **Bq/kg** for the isotopes under study

⑤ Develop and coordinate purification techniques

#### Sensitivities of the advanced techniques proposed in ISOTTA

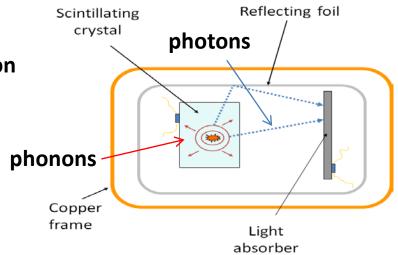
External source approach – the BiPo way

**Principle:** <sup>214</sup>Bi and <sup>208</sup>Tl contaminations in sources in the form of thin sheets measured by **BiPo processes** from natural radioactivity chains ———— **beta + delayed alpha** 



Sensitivity: from preliminary measurements, conservative estimation of BiPo3 detection limits

Example: **1.3 kg of <sup>82</sup>Se** thin source


$$A(^{208}TI) < 6.2 \mu Bq/kg 90 %CL$$
  
 $A(^{214}Bi) < 20.2 \mu Bq/kg 90 %CL$ 

## Sensitivities of the advanced techniques proposed in ISOTTA

2 "Self counting" approach – the scintillating bolometer way

Principle: a crystal containing the isotope under study is operated as scintillating bolometer

Simultaneous detection of **heat** and **scintillation** light and different quenching factor allow excellent **alpha / beta separation** 



**Sensitivity**: example – **100** g of <sup>100</sup>Mo operated inside a scintillating bolometer

- 0 background above 2615 keV in the alpha region in one month

 $A(^{232}Th)$ ,  $A(^{238}U)$  < 11  $\mu$ Bq/kg 90 %CL

Since the main alpha lines of the natural radioactive chains are individually detected with high energy resolution, breaking of secular equilibrium can be directly observed

#### Sensitivities of the advanced techniques proposed in ISOTTA

The techniques adopted in *ISOTTA* can provide unprecedented sensitivities at the level of

# a few μBq/kg

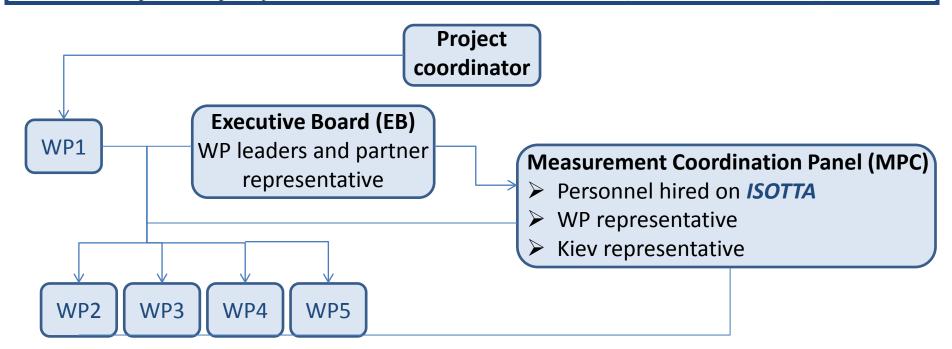
for several DBD candidates and for the most dangerous isotopes

- <sup>238</sup>U, <sup>232</sup>Th and their daughters
- Specifically, <sup>208</sup>TI and <sup>214</sup>Bi
- Cosmogenic nuclide contribution (directly appreciable with the "self counting" approach)

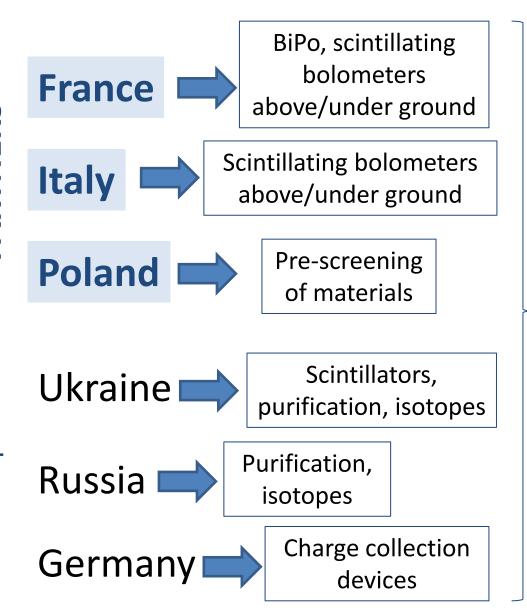
level required by DBD experiment aiming at attacking the **inverted hierarchy region** 

#### The structure of ISOTTA

#### 5 work-packages


WP1: Management and Coordination [Andrea Giuliani, CNRS]

WP2: Isotope production and purification [Ezio Previtali, INFN]


WP3: Isotope radio-purity assessment with nuclear and mass spectroscopy [Marcin Wojcik, IF UJ]

WP4: Isotope radio-purity assessment with external source approach [Laurent Simard, CNRS]

WP5: Isotope radio-purity assessment with calorimetric methods [Stefano Pirro, INFN]



#### Added value of transnational collaboration



Distributed laboratory with a few µBq/kg sensitivity

#### **WP1: Management and Coordination**

#### **Objectives:**

- monitor the technical and scientific work of the other Work Packages;
- guarantee that the proposed schedule is maintained, that the project milestones are achieved and that the deliverables are produced on time;
- organize and coordinate the general meetings;
- coordinate the activities proposed by the MCP;
- prepare the three general ISOTTA annual reports (which will emphasise the inter-comparison results and the activities which cut the boundaries between WPs);
- organize the dissemination program in collaboration with the EB;
- coordinate the protection, use and dissemination of the knowledge generated during the period of the
  project, establishing a light website that will work as a repository for the documentation (reports,
  presentations, databases, protocols) produced by the consortium;
- provide the contact and the communication with the ASPERA Common Call Secretariat.

#### **Deliverables:**

- Three annual reports
- Organization of the general meetings of ISOTTA and related material

## **Budget**

| Institution | Requested | Assigned           |
|-------------|-----------|--------------------|
| CNRS        | 164000    | 164000             |
| INFN        | 130000    | 54000              |
| NCBiR       | 268700    | ~160000 (ask A.Z.) |

## Milestones and deliverables (WP1, WP2)

|      | Description of Deliverable / Milestone                                      | Month            |
|------|-----------------------------------------------------------------------------|------------------|
| M1.1 | Set up of the Measurement Coordinating Panel                                | 2                |
| D1.1 | Organization of the general meeting and related documentation               | 4)10,16,22,28,34 |
| D1.2 | Website                                                                     | 6                |
| D1.3 | Annual reports (within inter-comparison among isotopes and technologies)    | 12)24,36         |
| M2.1 | Overview of the isotopes available inside the consortium                    | 2                |
| M2.2 | Identification of the isotope producers to be contacted                     | 4                |
| D2.1 | Report with overview of the producers and identification of the plants      | 6                |
| D2.2 | Preparation of a sequence of small enriched samples                         | 10,22            |
| D2.3 | Comparison between different enrichment techniques                          | 12,24            |
| D2.4 | Report on the chemical and physical characteristics of the prepared samples | 30               |
| M2.3 | Selection of the most reliable isotope producers                            | 32               |
| D2.5 | Identification of purification procedures for the enriched materials        | 34               |
| D2.6 | Preparation of a standard production protocol for isotope enrichments       | 36               |

Table 2 - Time plan of ISOTTA

| Month | 2  | 4  | б  | 8 | 10 | 12       | 14 | 16 | 18 | 20 | 22 | 24    | 26 | 28 | 30 | 32 | 34 | 36 |
|-------|----|----|----|---|----|----------|----|----|----|----|----|-------|----|----|----|----|----|----|
| WP1   | M1 | D1 | D2 |   | D1 | D3       |    | D1 |    |    | D1 | D3    |    | D1 |    |    | D1 | D3 |
| WP2   | M1 | M2 | D1 |   | D2 | D3       |    |    |    |    | D2 | D3    |    |    | D4 | М3 | D5 | D6 |
| WP3   |    |    |    |   | D1 | D2 D3 D4 | M1 |    |    |    | D1 | D4 D5 |    |    | M2 |    | D1 | D6 |
| WP4   | M1 |    |    |   | D1 |          | D2 |    | D3 | M2 |    |       |    |    |    |    | D4 |    |
| WP5   |    | M1 |    |   | D1 | D2       |    |    | D3 |    |    | D1    |    | D2 |    | D3 | M2 |    |

## Milestones and deliverables (WP3, WP4,WP5)

|      | Description of Deliverable / Milestone                                                    | Month    |
|------|-------------------------------------------------------------------------------------------|----------|
| D3.1 | Report on the screening campaign of the enriched samples and sources                      | 10)22,34 |
| D3.2 | Report on the MC results on expected performance of different a spectrometers             | 12       |
| M3.1 | Selection of the technology for a new large surface $\boldsymbol{\alpha}$ spectrometer    | 14       |
| D3.3 | Design study of a new Ge spectrometer with different shielding options                    | 12       |
| D3.4 | Report on simulations of background for the $\alpha$ and $\gamma$ spectrometers at SUNLAB | 12,24    |
| D3.5 | Working prototypes of $\alpha$ and $\gamma$ spectrometer and related report               | 24       |
| M3.2 | $lpha$ and $\gamma$ spectrometers ready for measurements                                  | 30       |
| D3.6 | Report on performance of $\ \alpha$ and $\gamma$ spectrometer and related measurements    | 36       |
| M4.1 | BiPo-3 detector available                                                                 | 2        |
| D4.1 | Report on the background of the BiPo-3 detector                                           | 10       |
| D4.2 | Technical report on the performance of the BiPo-3 detector                                | 14       |
| D4.3 | Report on the internal radioactivity of the 82Se source                                   | 18       |
| M4.2 | Validation of the 82Se source                                                             | 20       |
| D4.4 | Report on all the measurements made with the BiPo-1 and BiPo-3                            | 34       |
| M5.1 | Aboveground set-ups ready for characterization of calorimetric detectors                  | (4       |
| D5.1 | Technical report on the performance of the calorimetric detectors                         | 10,24    |
| D5.2 | Report on the internal radioactivity of natural crystalline samples                       | 12, 28   |
| D5.3 | Report on the internal radioactivity of enriched crystalline samples                      | 18,32    |
| M5.2 | Ranking of isotopes for a future large calorimetric 0v-DBD experiment                     | 34       |
|      |                                                                                           |          |

| Month | 2  | 4  | 6  | 8 | 10 | 12       | 14 | 16 | 18 | 20 | 22 | 24                    | 26 | 28 | 30 | 32 | 34 | 36 |
|-------|----|----|----|---|----|----------|----|----|----|----|----|-----------------------|----|----|----|----|----|----|
| WP1   | M1 | D1 | D2 |   | D1 | D3       |    | D1 |    |    | D1 | D3                    |    | D1 |    |    | D1 | D3 |
| WP2   | M1 | M2 | D1 |   | D2 | D3       |    |    |    |    | D2 | D3                    |    |    | D4 | М3 | D5 | D6 |
| WP3   |    |    |    |   | D1 | D2 D3 D4 | M1 |    |    |    | D1 | <b>D</b> 4 <b>D</b> 5 |    |    | M2 |    | D1 | D6 |
| WP4   | M1 |    |    |   | D1 |          | D2 |    | D3 | M2 |    |                       |    |    |    |    | D4 |    |
| WP5   |    | M1 |    |   | D1 | D2       |    |    | D3 |    |    | D1                    |    | D2 |    | D3 | M2 |    |