ISOTTA (Isotope Trace Analysis)

Neganov-Luke assisted Light Sensors

Emiliano Olivieri for the Detector R&D Group at CSNSM Laboratory (Orsay Campus)

Outline

- \blacktriangleright Physics background and motivations: the double beta decay ($\beta\beta$)
- A bolometer in a nutshell...
- The Neganov-Luke Assisted light detector
 - -Neganov-Trofimov-Luke effect
 - -LukS working regimes
 - -The first two prototypes
- Experimental set-up for a complete characterization
- Results and Perspectives
- Conclusions

Rare event search: 0ν - $\beta\beta$ decay

Double Beta Decay (2ν - $\beta\beta$)

$$(A,Z) \rightarrow (A,Z+2) + 2e^{-} + 2v_{e}^{-}$$

 $[T_{1/2}(2v)]^{-1} = G_{2v}(Q, Z)|M_{2v}|^2$

The shape of the two electron sum energy spectrum enables to distinguish among the two different discussed decay modes

<u>Neutrino-less Double Beta Decay (0ν - $\beta\beta$)</u>

 $[T_{1/2}(0v)]^{-1} = G_{0v}(Q, Z) |M_{0v}|^2 m_{\beta\beta}^2$

The 0ν - $\beta\beta$ candidates

Nucleus	I. A.	Q-value [keV]	Materials successfully tested as bolometers in crystalline form
⁷⁶ Ge	7.8	2039	Ge
130 Te	0.9 33.8	2479	
¹¹⁶ Cd	7.5	2802	CdWO, CdMoO,
⁸² Se	9.2	2995	ZnSe
¹⁰⁰ Mo	9.6	3034	$PbMoO_4$, CaMoO_4, SrMoO_4, CdMoO_4, ZnMoO_4
⁹⁶ Zr ¹⁵⁰ Nd ⁴⁸ Ca	2.8 5.6 0.187	Li ₂ MoO 3350 3367 4270	⁴ , MgMoO ₄ ZrO ₂ NONE → many attempts CaF ₂ , CaMoO ₄
		Cuor	icino, CUORE LUMINEU Orsay, Kiev, Novosibirsk, (

∆E=energy res. b=bkg in counts/keV/kg/day M=effective mass t_{live}=life time

Next future 0ν - $\beta\beta$ experiment...

LUMINEU prototypes

A bolometer in a nutshell

Heat and Light

The LukS detector: generalities

Even and odd aluminum annular electrodes respectively connected by bonding aluminum wires. V_{bias} is applied within the two sets (Ex. 10V)

0.0115

0V el. set

15x15 mm² LukS, 500 um thic

Max: 10.0

10

9

8

7

6

5

4

3

2

Surface: Electric potential [V]

Streamline: Electric field

0V el. set

Neganov-Luke effect

- I) Event creates e-h pairs
- 2) e-h pairs are drifted by E_{bias}

3) Phonon emission while e-h pairs drift. The external generator provide the energy

1) The over-heating is proportional to $N_{e-h} = E_r/\epsilon$, the number of pairs created by an event of E_r energy. 2) The quantum yield ϵ depends on the semiconductor (gap) and photon energy. For germanium in X region: $\epsilon=3 \text{ eV}/(e-h)$. Close to the gap, ϵ is much lower...

3) By increasing V the heat signal is mainly dominated by the charge creation \Rightarrow beyond the

thermodynamic fluctuation limit (Fano fluctuations)

$$\left\langle \left(\Delta E\right)^2\right\rangle = k_B \cdot T_0^2 \cdot C +$$

Germanium quantum yield

b) Number of electron-hole pairs generated in germanium by the absorption of the total energy of one electronvolt as a function of the energy of the incident radiation.

Neganov-Luke sensor: the two regimes

RADIATION IONIZATION ENERGY (eV)

w is the e-h creation energy. In germanium, it varies between 0.64 and 3 eV, depending on the E of the impinging particle. Fano factor F is material-dependent and in Ge is 0.13

We can increase the heat signal without any limit, increasing V (but dark currents)!

The 2-inches detector

The main questions:

Baseline noise

- Energy resolution
- ▶Gain under different excitation: X, IR Photons, Visible Photons

<u>Light emitting source:</u>

ZnSe crystal which scintillates under ²³⁸U liquid alpha source and provide almost 60 keV/alpha

 Tagging of alpha-induced light events via a second Ge-NTD sensor

Absolute Calibration Source

Collimated ⁵⁵Fe, which provides 5.9 and 6.4 keV X rays

Results: thermal sensitivity gain

Heat and Light event-by-event scatterplot

Observations:

- Charge trapping at surfaces reduces the gain with respect to 3eV/e-h
- Gain depends on the particle/wavelength
- Leakage current appearance at high bias ($12V \rightarrow E_{field} = 60V/cm$), which at the moment is the

only limit to increase the gain!

Results: baseline noise reduction

Neganov-Luke detector acts as a standard detector with zero bias \Rightarrow no specific heat added

by the electrode deposition

The baseline noise squeezes due to the sensitivity gain

Baseline noise reduction well explained by the sensitivity gain due to Neganov-Luke \Rightarrow no

excess noise injected by the electrode bias and no leakage current observed up to 12V bias!

The CRESST and LukS light detector comparison

Composite detector

- 0 Evaporation of the Ir-Au-TES onto a small substrate (3x5x0.5mm³) using a shadow mask
- 0 Thermometer is glued onto a Si substrate (20x20x0.5mm³)(absorber)
- Al electrodes are directly evaporated onto the absorber

Voltage [V]

140

160

60

40

20

Next future R&D

►ZnMoO₄ large mass experiment for neutrino-less search

When increasing the scintillating crystal, <u>less light</u> <u>escapes the crystal</u> <u>A much sensitive light detector is mandatory to scale</u> <u>the detector and LukS detector will fit</u> Cherenkov light in TeO2 massive bolometer

TeO₂ do not scintillate but Cherenkov! There is <u>no enough light resolution</u> for event-by-event discrimination with s<u>tandard light</u> detector in TeO₂! <u>LukS detectors will fit with this set-up</u>

Replace/Re-processing all the standard light detector with Neganov-Luke assisted tecnologie

Next future LukS prototype

High impedance TES sensor, meander shaped.

Conclusions

✓ Different geometries of LukS detector have been successfully tested

✓ Gap between theoretical and experimental gain: still some charge trapping

 \checkmark Sensitivity gain as high as 4 have been obtained

✓ Exportable technology on existing light detectors (evaporation of aluminum electrodes)

 $\sqrt{New perspectives and possible updates for next generation }$ 0v-2 β experiment

Decreasing the electrode pitch to closely obtain the theoretical gain
Increasing the V bias, with better control of the leakage current (we have hints...)

Testing the High Impedance NbSi TES sensors at the place of "standard" Ge-NTD sensors...

Backup 3

