Two-Neutrino pile-up discrimination in bolometers for Double Beta Decay

F.Bellini, C.Tomei, M.Vignati

"Sapienza" Università di Roma & INFN Roma

Kick-off ISOTTA meeting

Paris 29/06/2012

The problem

- It was "commonly" accepted that the only irreducible background in 0vββ search was from the tail of the 2vββ mode but...
- Bolometric detectors are
 - ► slow
 - not sensitive to event topology
- In Phys. Lett. B 710 (2012) 318, it was pointed out that two independent 2vββ signals can sum up to produce events in the ROI

Isotope	T _{1/2} (2v) [y]		
⁸² Se	9.2 · 10 ¹⁹]	worot
¹⁰⁰ Mo	7.1 · 10 ¹⁸		case
¹¹⁶ Cd	2.8 · 10 ¹⁹		
¹³⁰ Te	7 · 10 ²⁰		

$2v\beta\beta$ pile-up background

- Pile up rate in the ROI = $\varepsilon \cdot (r_{2v})^2 \cdot \Delta t$
 - ε = fraction of events in ROI
 - $r_{2v} = 2v\beta\beta$ count-rate
 - Δt = resolving time
- But discrimination capability is a function of
 - ► <u>∆t</u>
 - relative amplitudes among the two pulses
 - ► S/N ratio
- Quantify the background induced by pile-up events in a ± 50 keV ROI for 5x5x5 cm³ bolometers (ZnSe, ZnMO₄, TeO₂, CdWO₄)

Which ΔT?

• Using the existing CUORE simulator for TeO₂ bolometers

Signal and noise simulation of CUORE bolometric detectors JINST 6(2011)P08007

- Signal is derived from the thermal model described in J.Appl.Phys.108 (2010) 084903
- Noise is sampled according to measured noise power spectra of real TeO₂ detectors.
- Effects generated by operating temperature drifts, nonlinearities and pileups are included.

Amplitude (mV)

700

1694

1692

10

Simulator input

• Custom:

- Energy spectrum
- Baseline distribution
- Distribution of time arrivals between pulses

Parameter	Name	Equation	Estimation
τ_r	Thermal rise time	4.1	Fit
α	Weight of the two thermal decay constants	4.1	Fit
τ_{d1}	Fast thermal decay constant	4.1	Fit
T _{d2}	Slow thermal decay constant	4.1	Fit
с	Energy to thermal amplitude conversion	4.10	Fit
R^B	Thermistor resistance at the pulse baseline	4.5	Measured
Vbias	Bias voltage	4.9	Measured
RL	Load resistor	4.9	Measured
Cp	Parasitic capacitance	4.9	Measured
G	Electronics gain	4.11	Measured
fb	Bessel filter cutoff frequency	4.14	Measured
Vh	Electronics offset voltage	4.16	Measured
V^B	Baseline voltage	4.17	Measured
to	Onset time of the pulse	4.17	Fit

Output

Signal and heater pulses + pure noise waveforms

MC Example and Validation

• A ²³²Th calibration was simulated using as input a real calibration from a CUORE crystal validation run (CCVR1, 7 channels)

MC

data

Validation

- MC and data processed with the same analysis chain
- Average pulse done on 2615 keV line
- Comparison of several distribution (for pulses @ 2615)
- CAVEAT: we expect some discrepancies in the width of RiseTime distribution due to the fact that the simulator assigns to each pulse exactly the same trigger position (ADC sample), while for real pulses this is not always true.

Validation

MC Data

Simulation Input

- Energy distribution:
 - $0\nu\beta\beta$: for comparison with single pulse events at Q value
 - 2vββ: usual distribution see Zuber's Book "Neutrino Physics"
- Single energy distribution eq 7.27
- Sum energy distribution eq 7.28

$$\frac{\mathrm{d}N}{\mathrm{d}T_e} \approx (T_e + 1)^2 (Q - T_e)^6 [(Q - T_e)^2 + 8(Q - T_e) + 28]$$
$$\frac{\mathrm{d}N}{\mathrm{d}K} \approx K(Q - K)^5 \left(1 + 2K + \frac{4K^2}{3} + \frac{K^3}{3} + \frac{K^4}{30}\right)$$

• Pile-up for $2\nu\beta\beta$ simulated for with $0<\Delta T<100$ ms

Example of pile-up events in ROI

ΔT

• Scatter plots of rise time vs. ΔT between the pulses that pile-up (from MC truth)

• With these cuts and $\Delta t \ge 5$ ms ALL pile-up events in ROI are discriminated

Find ϵ in ± 50 keV ROI

Time Resolution

- In timing measurements the quantity to optimize is not S/N but slope/noise
 - t_r = rise time
 - rise time matters but noise also

$$\sigma_t = \frac{\sigma_n}{(dS/dt)_{S_T}} \approx \frac{t_r}{S/N},$$

Helmuth Spieler - Radiation Detectors and Signal Processing

Comparison in heat bolometers

- R=rejection power
- $R/R_{TeO2} = \tau_{TeO2}/\tau \cdot [(S/N)_{TeO2} / (S/N)]$

Detector	rise time(ms)	S/N	R/R _{TeO2}
ZnSe	7	700	2
CdWO ₄	20	?	
ZnMoO ₄	10	1700	3
TeO2	50	2600	1

Background estimate

Isotope	Detector	Crystal Mass [g]	a.i. [%]	Ν _{ββ} 2ν	T _{1/2} 2v [y]	Rate 2v [Hz]	Rate pile-up [Hz]	counts/kg keV y in ROI	counts/kg keV y in ROI scaled by R
⁸² Se	ZnSe	659	90	2.50E+24	9.20E+19	5.90E-04	1.70E-09	2.70E-05	1.30E-05
¹⁰⁰ Mo	ZnMoO₄	537	90	1.30E+24	7.10E+18	4.00E-03	8.80E-08	1.50E-03	5.00E-04
¹¹⁶ Cd	CdWO ₄	887	90	1.50E+24	2.80E+19	1.20E-03	6.80E-09	7.40E-05	7.4E-05?
¹³⁰ Te	TeO ₂	750	90	2.50E+24	7.00E+20	8.20E-05	3.40E-11	5.00E-07	5.00E-07

• Can we gain something by exploiting the faster time response of light detectors?

S/N ratio in light detector

- We assume $\sigma \approx 150 \text{ eV}$ for the light detector, rise time ~10 ms
- S= light emitted @ 2.6 MeV

Detector	LY @2615 keV	S/N	RL/R _{TeO2}
ZnSe	7 keV/MeV	120	0.22
CdWO ₄	17 keV/MeV	330	0.53
ZnMoO ₄	1.4keV/MeV	20	0.04

• The worst case is ZnMo₄ which is also the bolometer for which we expect the highest background contribution

Comparison with EPJ(2012)72:1989

- Simulation of light detector
- Signal and noise pulse from real detector faced to a small ZnMO₄ crystal
- S/N fixed at 30, rise time ~3 ms
- Flat ∆T in 0-10 ms
- Energy of two decays summed
- time resolution of 1 ms

