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About this Presentation

Goals and Contents
I CPU and Network Models used in SimGrid (and elsewhere)

I Some realism considerations

I Choosing the models used in practice

The SimGrid 101 serie
I This is part of a serie of presentations introducing various aspects of SimGrid

I SimGrid 101. Introduction to the SimGrid Scientific Project
I SimGrid User 101. Practical introduction to SimGrid and MSG
I SimGrid User::Platform 101. Defining platforms and experiments in SimGrid
I SimGrid User::SimDag 101. Practical introduction to the use of SimDag
I SimGrid User::Visualization 101. Visualization of SimGrid simulation results
I SimGrid User::SMPI 101. Simulation MPI applications in practice
I SimGrid User::Model-checking 101. Formal Verification of SimGrid programs
I SimGrid Internal::Models. The Platform Models underlying SimGrid
I SimGrid Internal::Kernel. Under the Hood of SimGrid

I Retrieve them from http://simgrid.gforge.inria.fr/101
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Large Scale Distributed Systems

LSDS (clusters, P2P, grid, volunteer computing, clouds, . . . ) are a pain

I analytic methods quickly become intractable and often fail to capture key
characteristics of real systems

I experiments on the field are tedious, time-consuming, non-reproducible,
sometimes even impossible

Hence, lots of research in our area rely on simulation

LSDS simulation challenges

I scalability (both in terms of speed and memory)
I accuracy/validity/realism (a very context-dependent notion)
I genericity

Most works trade everything for scalability although. . .

Premature optimization is the root of all evil

– D.E.Knuth
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Validity: Community Requirements

Networking Protocol design requires accurate packet-level simulations

Not everyone has such needs

P2P DHT geographic diversity, jitter, churn
; no need for contention, only delay

P2P streaming network proximity, asymmetry, interference on the edge
; ignore the core

Grid heterogeneity, complex topology, contention w. large transfers
; no need to focus on packets

Volunteer Computing dynamic availability, heterogeneity
; little need for networking

HPC complex communication workload, protocol peculiarities
; build on regularity and homogeneity

Cloud mixture of previous requirements

Consequence: most simulators are ad hoc and domain-specific︸ ︷︷ ︸
read “dead within a year or so”
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Interactions between the user code and the models

SimGrid Functional Organization

I MSG: User-friendly syntaxic sugar

I Simix: Processes, synchro (SimPosix)

I SURF: Resources usage interface

I Models: Action completion computation LMM
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The CPU model in a nutshell

Modeling computations in SimGrid

CPU = rate R in Mflop/s ⊕ Computation = amount A of Flops ; Time = A/R

Simulation kernel main loop

1. Some actions get created (by application) and assigned to resources

2. Compute share of everyone (resource sharing algorithms)

3. Compute the earliest finishing action, advance simulated time to that time

4. Remove finished actions

5. Loop back to 2

Simulated time
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Adding Dynamic Availabilities to the Picture

Trace definition
I List of discrete events where the maximal availability changes

I t0 → 100%, t1 → 50%, t2 → 80%, etc.

Adding traces doesn’t change kernel main loop

I Availability changes: simulation events, just like action ends

I Efficient implementation thanks to trace integration

Simulated time

�
�
�

�
�
�

SimGrid also accept state changes (on/off)
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Pros and Cons

Pros
I Simple and accounts for speed heterogeneity

I Trace integration ; very efficient implementation

I Simple multi-core extension where each process receives min(R, pR/N)

Cons
I Too simple:

I does not account neither for affinity/memory nor compiler/OS peculiarities
; rate is bound to a specific kernel

I (a priori) bad modeling of inter-core communications
I does not account for cache sharing between cores

; neither trashing nor symbiosis

I The failure mechanism has been here for 8 years but people barely use it

I No GPU model in SimGrid yet
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Network Communication Models

Packet-level simulation Networking community has standards, many popular
open-source projects (NS, GTneTS, OmNet++,. . . )

I full simulation of the whole protocol stack
I complex models ; hard to instantiate
I inherently slow
I beware of simplistic packet-level simulation

Along the same lines: Weaver and MsKee, Are Cycle Accurate Simulations a Waste of Time?,
Proc. of the Workshop on Duplicating, Deconstruction and Debunking, 2008

Delay-based models The simplest ones. . .

I communication time = constant delay, statistical distribution, LogP

;(Θ(1) footprint and O(1) computation)
I coordinate based systems to account for geographic proximity

;(Θ(N) footprint and O(1) computation)

Although very scalable, these models ignore network congestion and typically
assume large bissection bandwidth
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Network Communication Models (cont’d)

Flow-level models A communication (flow) is simulated as a single entity:

Ti,j (S) = Li,j + S/Bi,j , where


S message size

Li,j latency between i and j

Bi,j bandwidth between i and j

Estimating Bi,j requires to account for interactions with other flows

Assume steady-state and share bandwidth every time a new flow appears or
disappears

Setting a set of flows F and a set of links L
Constraints For all link j :

∑
if flow i uses link j

%i 6 Cj

Objective function

I Max-Min max(min(%i ))
I or other fancy objectives

e.g., Reno ∼ max(
∑

log(%i ))
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Max-Min Fairness

Objective function: maximize min
f ∈F

(%f )

I Equilibrium reached if increasing any %f decreases a %′f (with %f > %′f )

I Very reasonable goal: gives fair share to anyone

I Optionally, one can add prorities wi for each flow i
; maximizing min

f ∈F
(wf %f )

Bottleneck links
I For each flow f , one of the links is the limiting one l

(with more on that link l , the flow f would get more overall)

I The objective function gives that l is saturated, and f gets the biggest share

∀f ∈ F , ∃l ∈ f ,
∑
f ′3l

%f ′ = Cl and %f = max{%f ′ , f ′ 3 l}

L. Massoulié and J. Roberts, Bandwidth sharing: objectives and algorithms,
IEEE/ACM Trans. Netw., vol. 10, no. 3, pp. 320-328, 2002.
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Implementation of Max-Min Fairness

Bucket-filling algorithm

I Set the bandwidth of all flows to 0

I Increase the bandwidth of every flow by ε. And again, and again, and again.

I When one link is saturated, all flows using it are limited (; removed from set)

I Loop until all flows have found a limiting link

Efficient Algorithm

1. Search for the bottleneck link l so that:
Cl

nl
= min

{
Ck

nk
, k ∈ L

}
2. ∀f ∈ l , %f = Cl

nl
;

Update all nl and Cl to remove these flows

3. Loop until all %f are fixed
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Max-Min Fairness on Homogeneous Linear Network

flow 2flow 1

flow 0
link 1 link 2

C1 = C n1 = 2
C2 = C n2 = 2

%0 =
%1 =
%2 =

I All links have the same capacity C

I Each of them is limiting. Let’s choose link 1

⇒ %0 = C/2 and %1 = C/2

I Remove flows 0 and 1; Update links’ capacity

I Link 2 sets %1 = C/2

We’re done computing the bandwidth allocated to each flow
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Max-Min Fairness on Backbone

Flow 2

link 2

link 4

Flow 1

link 3link 1

link 0

C0 = 1 n0 = 1
C1 = 1000 n1 = 1
C2 = 1000 n2 = 2
C3 = 1000 n3 = 1
C4 = 1000 n4 = 1

%1 =
%2 =

I The limiting link is link 0
(
since 1

1 = min
(

1
1 ,

1000
1 , 1000

2 , 1000
1 , 1000

1

))

I This fixes %2 = 1. Update the links

I The limiting link is link 2

I This fixes %1 = 999

I Done. We know %1 and %2
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Side note: OptorSim 2.1 on Backbone

OptorSim (developped @CERN for Data-Grid)

I One of the rare ad-hoc simulators not using simplistic packet-level routing

Unfortunately, “strange” resource sharing:

1. For each link, compute the share that each flow may get: Cl

nl

2. For each flow, compute what it gets: %f = min
l∈f

(
Cl

nl

)

C0 = 1 n1 = 1 share =

1

C1 = 1000 n1 = 1 share =

1000

C2 = 1000 n2 = 2 share =
C3 = 1000 n3 = 1 share =

1000

C4 = 1000 n4 = 1 share =

1000

%1 =

min(1000, 500, 1000) = 500!!

%2 =

%1 limited by link 2, but 499 still unused on link 2

This “unwanted feature” is even listed in the README file...

Da SimGrid Team SURF 101 Network Models 19/29



Side note: OptorSim 2.1 on Backbone

OptorSim (developped @CERN for Data-Grid)

I One of the rare ad-hoc simulators not using simplistic packet-level routing

Unfortunately, “strange” resource sharing:

1. For each link, compute the share that each flow may get: Cl

nl

2. For each flow, compute what it gets: %f = min
l∈f

(
Cl

nl

)

Flow 2

link 2

link 4

Flow 1

link 3link 1

link 0

C0 = 1 n1 = 1 share =

1

C1 = 1000 n1 = 1 share =

1000

C2 = 1000 n2 = 2 share =
C3 = 1000 n3 = 1 share =

1000

C4 = 1000 n4 = 1 share =

1000

%1 =

min(1000, 500, 1000) = 500!!

%2 =

%1 limited by link 2, but 499 still unused on link 2

This “unwanted feature” is even listed in the README file...

Da SimGrid Team SURF 101 Network Models 19/29



Side note: OptorSim 2.1 on Backbone

OptorSim (developped @CERN for Data-Grid)

I One of the rare ad-hoc simulators not using simplistic packet-level routing

Unfortunately, “strange” resource sharing:

1. For each link, compute the share that each flow may get: Cl

nl

2. For each flow, compute what it gets: %f = min
l∈f

(
Cl

nl

)

Flow 2

link 2

link 4

Flow 1

link 3link 1

link 0

C0 = 1 n1 = 1 share = 1
C1 = 1000 n1 = 1 share = 1000
C2 = 1000 n2 = 2 share = 500
C3 = 1000 n3 = 1 share = 1000
C4 = 1000 n4 = 1 share = 1000

%1 = min(1000, 500, 1000)

= 500!!

%2 = min( 1 , 500, 1000)

%1 limited by link 2, but 499 still unused on link 2

This “unwanted feature” is even listed in the README file...

Da SimGrid Team SURF 101 Network Models 19/29



Side note: OptorSim 2.1 on Backbone

OptorSim (developped @CERN for Data-Grid)

I One of the rare ad-hoc simulators not using simplistic packet-level routing

Unfortunately, “strange” resource sharing:

1. For each link, compute the share that each flow may get: Cl

nl

2. For each flow, compute what it gets: %f = min
l∈f

(
Cl

nl

)

Flow 2

link 2

link 4

Flow 1

link 3link 1

link 0

C0 = 1 n1 = 1 share = 1
C1 = 1000 n1 = 1 share = 1000
C2 = 1000 n2 = 2 share = 500
C3 = 1000 n3 = 1 share = 1000
C4 = 1000 n4 = 1 share = 1000

%1 = min(1000, 500, 1000) = 500!!
%2 = min( 1 , 500, 1000) = 1

%1 limited by link 2, but 499 still unused on link 2

This “unwanted feature” is even listed in the README file...

Da SimGrid Team SURF 101 Network Models 19/29



Side note: GridSim and CloudSim

GridSim 5.2 on a single link

I Packet-level: latency paid for every packet, not only the first one
; actually wormhole of packets

I Flow sharing: buggy, only subsequent flows share the link
The code intend seems to be on reevaluating the sharings, but it fails on tests

CloudSim
I Flow sharing, but no sharing between flows starting at t and t + ε

I Consequence:
I 1 message of size S takes time t
I 2 flows take time T and 2T.

Not because it’s FIFO but because bandwidth allocation is not reavaluated
upon flow arrival and departure...
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Proportional Fairness

Max-Min validity limits

I MaxMin gives a fair share to everyone

I Reasonable, but TCP does not do so

I Congestion mecanism: Additive Increase, Muplicative Decrease (AIMD)

I Complicates modeling, as shown in literature

Other sharing methods

I MaxMin gives more to long flows (resource-eager), TCP known to do opposite

I TCP Vegas achieves weighted proportionnal fairness and maximizes:∑
f ∈F

Lf log(%f ) (Lf being the latency)

I TCP Reno maximizes
∑
f ∈F

√
3/2

Lf
arctan

(√
3/2

Lf
.%f

)

Kelly, Charging and rate control for elastic traffic, in European Transactions on
Telecommunications, vol. 8, 1997, pp. 33-37.
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Wanted Feature (1): Flow Control Limitation

Experimental settings

TCP
source

TCP

sink

Link

1 flow

I Flow throughput as function of L and B

I Fixed size (S=100MB) and window (W=20KB)

Results

0.000
0.100

0.200
0.300 56 kbit/s

10 Mbit/s

56 kbit/s

10 Mbit/s

Latency (L)

Bandwidth (B)

Throughput (T/S)

Legend
I Mesh: SimGrid results

S

S/min(B, W
2L

) + L

I •: GTNetS results

Conclusion
I SimGrid estimations close to packet-level simulators (when S=100MB)

I When B < W
2L

(B=100KB/s, L=500ms), |εmax | ≈ |ε| ≈ 1%

I When B > W
2L

(B=100KB/s, L= 10ms), |εmax | ≈ |ε| ≈ 2%
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Wanted Feature (2): Slow Start
Experimental settings
TCP

source

TCP

sink

Link

1 flow

I Compute achieved bandwidth as function of S
I Fixed L=10ms and B=100MB/s

Evaluation of the SimGrid fluid model

Data size (Mb)

T
h

ro
u

g
h

p
u

t 
(K

b
/s

)

SimGrid

NS2

SSFNet (0.2)

SSFNet (0.01)

GTNets

0.001 0.01 0.1 1 10 100 1000

0

300

200

100

900

400

500

600

700

800

 0

 0.5

 1

 1.5

 2

 0.001  0.01  0.1  1  10  100  1000

Data size (MB)

|ε
|

I Packet-level tools don’t completely agree
I SSFNet TCP FAST INTERVAL bad default

I Statistical analysis of GTNetS slow-start
I New SimGrid model (LV08: MaxMin based)

I Bandwidth decreased (97%)
I Latency changed to 13.1× L
I Hence: Time = S

min(0.97×B, W
2L )

+ 13.1× L

I This dramatically improve validity range
compared to using raw L and B

S |ε| |εmax |
S < 100KB ≈ 12% ≈ 162%
S > 100KB ≈ 1% ≈ 6%
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Wanted Feature (3): RTT-unfairness

Hypothesis: Bottleneck links are proportionally shared with respect

to flow RTT

RTTA.%A = RTTB .%B where RTTi ≈
∑

flow i uses link j

(Lj ) (naive model)

I Longer flows (higher latency) will receive slightly less bandwidth
I However, bandwidth also matters

I Simple fix: RTTi ≈
∑

flow i uses link j

(
M

Bj
+ Lj

)
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Wanted Feature (4): Cross-Traffic Interference

Take two machines connected by a full-duplex ethernet link.

B/2,B/2

{B , (2, 0)}

{B , (0, 2)}

{B , (1, 1)}
B/2,B/2 B

{B , (2, 2)}
B/2,B/2

B/2,B/2

This is a well-known phenomenon when you are using ADSL

Burstiness at micro-scale severely impact macro-scale properties

Modeling such burstiness is ongoing research and resorts to complex differential
algebraic equations
Tang et al., Window Flow Control: Macroscopic Properties from Microscopic Factors, in
INFOCOM 2008
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Wanted Features!

Key characteristics of TCP
I Flow-control limitation

I Slow start

I RTT-unfairness

I Cross Traffic Interference

That’s messy. Have fluid models a chance ?

I Most previous models (delay,
∑

log,
∑

arctan, ...) are available in SimGrid

I When well-instantiated, max-min based model can account for all these
well-known phenomenon

I The default SimGrid model is LV08: a pragmatic max-min based that is far
from perfect but seems reasonnable according to our invalidation studies

Invalidation studies
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So, what is the model used in SimGrid?

“network/model:” command line argument

I CM02 ; Old max-min fairness

I Vegas / Reno ; Vegas/Reno TCP fairness (Lagrange approach)

I By default since SimGrid v3.3: “smart” max-min LV08

I Example: ./my simulator --cfg=network model:Vegas

Hint: try the ./my simulator --cfg=network model:Vegas command

CPU sharing policy (--cfg=network/model:)

I Default max-min Cas01 is sufficient for most cases

I Different implementations though (Lazy/TI/Full)

Want more?
I network model:gtnets or ns3 ; use GTNetS or NS3 for network Accuracy

of a packet-level network simulator without changing your code (!)

I Compose with workstation/model:compound or use ptask L07 ; model
specific to parallel tasks

I Plug your own model in SimGrid!!
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Conclusion and Future Work

Conclusion
I SimGrid is among the few projects that made (in)validation studies

I One can choose and tweak existing models but you should stick with the
default one. . .

I . . . unless it does not fulfill your needs and you know of a less generic but
more accurate one!

Future Work
I Network models for HPC networks

I Various storage models (in collaboration with the CERN)

I Improve the cpu model, add a notion of GPU, . . .

I Use stochastic models with a careful management of randomness
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