
!"#$%

On The Integration Of

Pascal Felber, Raluca Halalai, Lorenzo Leonini,
Etienne Rivière, Valerio Schiavoni, José Valerio

Université de Neuchâtel, Switzerland

SimGrid User Days 2012 - Ecully, France

!"#$%

!"#$% On The Integration of Splay & SimGrid - Valerio Schiavoni - University of Neuchâtel

About Me

• 2010-now : PhD student at the University of
Neuchâtel, Switzerland.

• Dependable and Distributed Computing Group.

• Topic: large-scale distributed systems, cloud
computing.

• 2007-2009: Research Engineer at INRIA Grenoble,
SARDES team.

2

!"#$% On The Integration of Splay & SimGrid - Valerio Schiavoni - University of Neuchâtel

Outline

• SPLAY overview

• Integrating SPLAY and SimGrid

• Based on rough ideas

• Suggestions are welcome, collaborations
even more!

3

!"#$% On The Integration of Splay & SimGrid - Valerio Schiavoni - University of Neuchâtel

Motivations

• Developing, testing and tuning distributed
applications is hard

• In Computer Science research, fixing the
gap of simplicity between pseudocode
description and implementation is hard

• Using worldwide testbeds is hard

4

!"#$% On The Integration of Splay & SimGrid - Valerio Schiavoni - University of Neuchâtel

What is

5

!"#$% On The Integration of Splay & SimGrid - Valerio Schiavoni - University of Neuchâtel

What is

5

!"#$% On The Integration of Splay & SimGrid - Valerio Schiavoni - University of Neuchâtel

What is

5

!"#$% On The Integration of Splay & SimGrid - Valerio Schiavoni - University of Neuchâtel

What is

• Machines contributed by universities,
companies,etc.
• ~1000 nodes at 531 sites (May 2012)

• Shared resources, no privileged access

• University-quality Internet links

• High resource contention

• Faults, churn, packet-loss is the norm

• Challenging conditions

5

!"#$% On The Integration of Splay & SimGrid - Valerio Schiavoni - University of Neuchâtel

• A testbed is a set of
machines for testing your
distributed applications/
protocols

• Several different testbeds!

6

networks of idle
workstations

your local
machine

our new cluster@UniNE

!"#$% On The Integration of Splay & SimGrid - Valerio Schiavoni - University of Neuchâtel

Daily Job With
Distributed Systems

7

!"#$% On The Integration of Splay & SimGrid - Valerio Schiavoni - University of Neuchâtel

1

Daily Job With
Distributed Systems

code

1 • Write (testbed specific) code
• Local tests, in-house cluster, PlanetLab...

7

!"#$% On The Integration of Splay & SimGrid - Valerio Schiavoni - University of Neuchâtel

2
1

Daily Job With
Distributed Systems

code debug

2 • Debug (in this context, a nightmare)

7

!"#$% On The Integration of Splay & SimGrid - Valerio Schiavoni - University of Neuchâtel

2
1

Daily Job With
Distributed Systems

code debug

2 • Debug (in this context, a nightmare)

7

!"#$% On The Integration of Splay & SimGrid - Valerio Schiavoni - University of Neuchâtel

3
21

Daily Job With
Distributed Systems

code debug deploy

3 • Deploy, with testbed specific scripts

7

!"#$% On The Integration of Splay & SimGrid - Valerio Schiavoni - University of Neuchâtel

3
21

Daily Job With
Distributed Systems

code debug deploy

3 • Deploy, with testbed specific scripts

7

!"#$% On The Integration of Splay & SimGrid - Valerio Schiavoni - University of Neuchâtel

4
321

Daily Job With
Distributed Systems

code debug deploy get logs

4 • Get logs, with testbed specific scripts

7

!"#$% On The Integration of Splay & SimGrid - Valerio Schiavoni - University of Neuchâtel

4
321

Daily Job With
Distributed Systems

code debug deploy get logs

4 • Get logs, with testbed specific scripts

7

!"#$% On The Integration of Splay & SimGrid - Valerio Schiavoni - University of Neuchâtel

5
4321

Daily Job With
Distributed Systems

code debug deploy get logs plots

5 • Produce plots, hopefully

7

!"#$% On The Integration of Splay & SimGrid - Valerio Schiavoni - University of Neuchâtel

54321

Daily Job With
Distributed Systems

code debug deploy get logs plots

5 • Produce plots, hopefully

7

!"#$% On The Integration of Splay & SimGrid - Valerio Schiavoni - University of Neuchâtel

 at a Glance

• Supports the development, evaluation, testing, and
tuning of distributed applications on any testbed:

• In-house cluster, shared testbeds, emulated
environments

• Provides an easy-to-use pseudocode-like language
based on Lua

• Write Once, Deploy&Run Everywhere

• Open-source: http://www.splay-project.org

!"#$%
code debug deploy get logs plots

8

http://splay-project.org
http://splay-project.org

!"#$% On The Integration of Splay & SimGrid - Valerio Schiavoni - University of Neuchâtel

 at a Glance

• Supports the development, evaluation, testing, and
tuning of distributed applications on any testbed:

• In-house cluster, shared testbeds, emulated
environments

• Provides an easy-to-use pseudocode-like language
based on Lua

• Write Once, Deploy&Run Everywhere

• Open-source: http://www.splay-project.org

!"#$%
code debug deploy get logs plots

8

http://splay-project.org
http://splay-project.org

!"#$% On The Integration of Splay & SimGrid - Valerio Schiavoni - University of Neuchâtel

 at a Glance

• Supports the development, evaluation, testing, and
tuning of distributed applications on any testbed:

• In-house cluster, shared testbeds, emulated
environments

• Provides an easy-to-use pseudocode-like language
based on Lua

• Write Once, Deploy&Run Everywhere

• Open-source: http://www.splay-project.org

!"#$%
code debug deploy get logs plots

gnuplot is

your frie
nd

8

http://splay-project.org
http://splay-project.org

http://www.splay-project.org

Language
• Based on

• High-level scripting language

• Made for interaction with C

• Bytecode-based, garbage collection

• Must be close to pseudo code (focus on the algorithm)
• & favor “natural ways” of expressing algorithms (e.g. RPCs)

• SPLAY applications can be run locally without the
deployment infrastructure (for debugging & testing)

• Comprehensive set of
libraries (can be
extended)

9

tributed system. It is noteworthy that the churn manage-
ment system relieves the need for fault injection systems
such as Loki [13]. Another typical use of the churn man-
agement system is for long-running applications, e.g., a
DHT that serves as a substrate for some other distributed
application under test and needs to stay available for the
whole duration of the experiments. In such a scenario,
one can ask the churn manager to maintain a fixed size
population of nodes and to automatically bootstrap new
ones as faults occur in the testbed.

3.3 Language and Applications

SPLAY applications are written in the Lua language [17],
a highly efficient scripting language. This design choice
was dictated by four majors factors. First, the most im-
portant reason is the support of sandboxing for remote
processes and, as a result, increased security both for the
testbed owner and its users. As mentioned earlier, sand-
boxing is a sound basis for execution in non-dedicated
environments, where resources need to be constrained
and where the hosting operating system must be shielded
from possibly buggy or ill-behaved code. Second, one
of SPLAY’s goals is to support large numbers of pro-
cesses within a single host of the testbed. This calls for
a low footprint for both the daemons and the associated
libraries. This excludes languages such as Java that re-
quire several megabytes of memory just for their exe-
cution environment. Third, SPLAY must ensure that the
achieved performance is as good as the host system per-
mits, and the features offered to the distributed system
designer shall not interfere with the performance of the
application. Fourth, SPLAY allows deployment of appli-
cations on any hardware and on any operating systems.
This requires a “write-once, run everywhere” approach
that calls for either an interpreted of bytecode-based lan-
guage. Lua’s unique features allow us to meet these goals
of lightweightness, simplicity, performance, security and
genericity.

Lua was designed from the ground up to be an efficient
scripting language with very low footprint. According
to recent benchmarks [2], Lua is among the fastest inter-
preted scripting languages. It is reflective, imperative, and
procedural with extensible semantics. Lua is dynamically
typed and has automatic memory management with incre-
mental garbage collection. The small footprint from Lua
results from its design that provides flexible and extensi-
ble meta-features, rather than a complete set of general-
purpose facilities. The full interpreter is less than 200 kB
and can be easily embedded or use libraries written in dif-
ferent languages (especially C/C++). This allows for low
level programming if need be. Our experiments (Sec-
tion 5) highlight the lightweightness of SPLAY applica-
tions using Lua, in terms of memory footprint, load, and
scalability.

Lua’s interpreter can directly execute source code,
as well as hardware-dependent (but operating system-
independent) bytecode. In SPLAY, the favored way of
submitting applications is in the form of source code, but
bytecode programs are also supported (e.g., for intellec-
tual property protection).

Isolation and sandboxing are achieved thanks to Lua’s
support for first-class functions with lexical scoping and
closures, which allow us to restrict access to I/O and net-
working libraries. We modify the behavior of these func-
tions to implement the restriction imposed by the admin-
istrator or by the user at the time he/she submits the ap-
plication for deployment over SPLAY.

Lua also supports cooperative multitasking by the
means of coroutines, which are at the core of SPLAY’s
event-based model (discussed below).

events/threads

crypto*

io (fs)*

sb_fs

misc

sb_stdlib

stdlib*

log rpc

json*llenc

socketeventssb_socket

luasocket*

splay::app

* : main dependencies: third!party and lua libraries

Figure 6: Overview of the main SPLAY libraries.

3.4 The Libraries
SPLAY includes an extensible set of shared libraries (see
Figure 6) tailored for the development of distributed ap-
plications and overlays. These libraries are meant to be
used outside of the deployment system, when developing
the application. We briefly describe the major compo-
nents of these libraries.

Networking. The luasocket library provides basic
networking facilities. We have wrapped it into a restricted
socket library, sb_socket, which includes a security
layer that can be controlled by the local administrator (the
person who has instantiated the local daemon process)
and further restricted remotely by the controller. This se-
cure layer allows us to limit: (1) the total bandwidth avail-
able for SPLAY applications (instantaneous bandwidth
can be limited using shaping tools if need be); (2) the
maximum number of sockets used by an application and
(3) the addresses that an application can or cannot con-
nect to. Restrictions are specified declaratively in config-
uration files by the local user that starts the daemon, or at
the controller via the command-line and Web-based APIs.

We have implemented higher-level abstractions for
simplifying communication between remote processes.
Our API supports message passing over TCP and UDP,
as well as access to remote function and variables using
RPCs. Calling a remote function is almost as simple as
calling a local one (see code in next section). Communi-
cation errors are reported using extra return values.2

2Lua allows multiple values to be returned by a function.

6

Lua

!"#$%

http://www.splay-project.org
http://www.splay-project.org

!"#$% On The Integration of Splay & SimGrid - Valerio Schiavoni - University of Neuchâtel

Why ?

• Light & Fast

• (Very) Close to equivalent code in C

• Concise

• Allow developers to focus on ideas more
than implementation details

• Key for researchers and students

• Sandbox thanks to the possibility of easily
redefine (even built-in) functions

10

!"#$% On The Integration of Splay & SimGrid - Valerio Schiavoni - University of Neuchâtel

Concise
11

!"#$% On The Integration of Splay & SimGrid - Valerio Schiavoni - University of Neuchâtel

Concise

Pseudo code
as published
on original

paper

Executable
code using

SPLAY
libraries

11

!"#$% On The Integration of Splay & SimGrid - Valerio Schiavoni - University of Neuchâtel

Network Emulation

• Similar in the spirit to existing network
emulators (ModelNet, Emulab)

• Novel features:

• multi-user

• multi-topology

• user-space

12

!"#$%

1

3.3

5

10

 0 10 20 30 40 50 60

u
p

lo
a

d
 r

a
te

 (
M

b
p

s)

data transfer time

Stream from 1 to 3
Stream from 2 to 4

1

2

3

4

10 Mbps
10ms

!"#$% On The Integration of Splay & SimGrid - Valerio Schiavoni - University of Neuchâtel

Network Emulation

• XML/TCS formats to define topologies

• Support for delay, lossy channels

• User-land bandwidth shaping

• Emulation of congestion at inner nodes in
a completely decentralized fashion

• Dynamic adjustments of token-bucket
bandwidth shapers

13

!"#$%

!"#$% On The Integration of Splay & SimGrid - Valerio Schiavoni - University of Neuchâtel

• Integrating the two systems to get the best
of both world

• Two options:

1. Use Splay apps within SimGrid

2. Use SimGrid apps within Splay

14

!"#$%

!"#$% On The Integration of Splay & SimGrid - Valerio Schiavoni - University of Neuchâtel

Splay within SimGrid

• Evaluate Splay applications with SimGrid

• Different execution models, network
emulation

• Splay adapter for SimGrid Lua Bindings

• Customized sandbox

• Customized Splay RPC libraries

15

!"#$% On The Integration of Splay & SimGrid - Valerio Schiavoni - University of Neuchâtel

SimGrid within Splay

• Evaluate SimGrid applications within Splay
testbed

• Easier if applications are written in Lua

• Alternatively, exploit Splay binary shipping

• On-the-fly per-job relaxation of Splay
sandbox to allow binary code

• What about sandboxing C applications?

16

!"#$% On The Integration of Splay & SimGrid - Valerio Schiavoni - University of Neuchâtel

• Distributed systems raise a number of
issues for their evaluation

• Their implementation, debug, deployment
and tuning is hard

• leverages Lua and centralized
controller to produce an easy to use yet
powerful working environment

Take
-aw

ay

Slid
e

!"#$%

17

