

LHCb Detector Status

Stéphane T'JAMPENS

Outline

LHCb Detector:

- Vertexing
- Tracking
- PID
- Trigger

Performances

Operations

LHCb: Heavy Flavour Super Factory at LHC

- LHCb is the dedicated flavour physics experiment at the LHC
 - Precision studies of *flavour changing* processes and *CP violation* with b and c-hadron decays
 - → test SM/indirect evidence of NP + constraints on NP flavour structure
- Advantages to run at the LHC:
 - $b\overline{b}$ cross section: ~280 µb (~75 ± 14 µb in LHCb acceptance) at \sqrt{s} =7 TeV
 - Charm production is 20 times larger: $\sigma(pp \rightarrow c\overline{c}X) = \sim 6 \text{ mb}$
 - LHCb acceptance / 1 fb⁻¹:
 - ~10¹¹ bb decays [all species produced: $B^0, B^+, B_s, B_c, \Lambda_b, ...$]
 - ~10¹² cc decays
 - Large boost: b-hadrons fly several millimeters before decaying
 - Signature for selecting events
- Challenging background condition: efficient trigger essential
 - $\sigma(pp \rightarrow X)_{inel} = \sim 60 \text{ mb at } \sqrt{s} = 7 \text{ TeV}$ [JINST (2012) P01010]

[PLB 694 (2010) 209] [arXiv:1302.2864]

LHCb ГНСр

Detector Layout

Forward- and backward-peaked $b\overline{b}$ production:

LHCb is a single-arm forward spectrometer: $2 < \eta < 5$ (operating in collider mode)

θ_{1} θ_{2} \overline{b} HCb MC $\sqrt{s} = 8 TeV$ $\theta_{2} [rad] \pi/2$ $\pi \pi$ $3\pi/4$ $\theta_{1} [rad]$

General detector layout

- The vertex detector is a key component
- Dipole magnet, and tracking stations before/after, to measure accurately the momentum
- Particle identification by 2 RICH detectors, electromagnetic and hadronic calorimeters, and a muon system

The LHCb Detector (point 8)

The LHCb Detector (point 8)

Vertexing and Tracking

Vertex Detection: VErtex LOcator (VELO)

Reconstruction of primary and decay vertices, track seeds + trigger input

- 21 modules of R-Φ silicon micro strip sensors
 - Pitch: ~40-100 μm
 - 44 mm radius

- Movable device (retracted for safety during beam injection):
 - 35 mm from beam in garage position
 - 8 mm from beam during "stable beams"

VELO Performances

Impact parameter resolution:

 Essential to distinguish secondary from primary tracks

Very good resolution:

~ 20 μ m for high p_T tracks (over 2 GeV/c)

Primary vertex resolution: excellent

- 13 µm in x,y (25 tracks)
- 70 µm in z (25 tracks)

Tracking System

- One station (TT) before the magnet
 - Si strips, 4 layers
- Dipole magnet
 - $\int BdI = ~4 Tm$; polarity switched regularly
- 3 stations after the magnet
 - Si strips in centre (IT), straw tubes outside (OT)
 - 4 layers per station x-u-v-x, (5 degree stereo angle)

Tracking efficiency over 96%

For tracks traversing the whole detector, over 5 GeV/c momentum

Particle Identification

RICH

- Particle identification from 2 to ~100 GeV/c
 - 2 RICH detectors, 3 radiators:
 - RICH1: aerogel + $C_4 F_{10}$ (1-60 GeV/c)
 - RICH2: CF₄ (15-100 GeV/c)
 - Readout by HPD (Hybrid Photon Detectors)
 - ~500, 1024 pixels
 - High efficiency, low noise

Efficiency

Particle ID performance:

- ~95% efficiency for 5% π-K contamination
 - Averaged over B daughter tracks

Calorimeters

- ECAL made of shashlik blocks
 - Lead scintillator stack (25 X₀)
 - ~6000 channels, readout by PMT
 - σ(E)/E ~ 10% / √E + 1%
- HCAL: scintillating tiles in iron
 - ~1500 channels, same readout and electronics as ECAL
 - σ(E)/E ~ 70% / √E + 9%
 - Mainly used for trigger
- SPD and PreShower
 - same geometry as ECAL
 - Scintillator tiles readout by MAPMT, separated by 2.5 X_0 lead sheet
 - Identify electron/photon, used in L0 trigger

Muons

- 5 stations (MWPCs) interleaved with iron walls
 - First station before the calorimeters
 - Projective geometry
 - Allows it to be used in the L0 trigger
- Muon identification performance
 - ~97% efficiency for 3% π - μ miss-ID.

Trigger

- Level-0 trigger: hardware (1 MHz max)
 - 4 µs latency @ 40MHz
 - "Moderate" E_{T}/p_{T} threshold:
 - E_τ(e/γ)>2.7 GeV; E_τ(h)>3.6 GeV
 - ρ_τ(μ)>1.4 GeV/c
- HLT trigger: software
 - ~30000 tasks in parallel on ~1500 nodes
 - Processing time available O(35-40 ms)
- Storage rate: 5 kHz
- Combined efficiency (L0+HLT):
 - ~90 % for di-muon channels
 - ~30 % for multi-body hadronic final states
 - ~10-20% for charm decays

Design specs: HLT output rate 200 Hz

Performances: illustrations

Tracking Performances

- Excellent momentum resolution
 - From 0.4% at 5 GeV/c to 0.6% at 100 GeV/c
 - Important ingredient to study narrow states
- Momentum scale and detector alignment well controlled:
 - World best measurements of b-hadron masses (2010 data, 37 pb⁻¹)

[CMS DPS-2010-040] ~ 16 MeV/c² [ATLAS CONF-2011-050] ~ 22 MeV/c²

Particle Identification Performances

Disentangle various decays with PID

Invariant mass resolution:

Neutral pion: $D^0 \rightarrow K \pi \pi^0$

LHCb Operation

Operation: Luminosity

LHCb designed luminosity:

- $L_{inst} = 2x10^{32} \text{ cm}^{-2}\text{s}^{-1}$ with $\mu=0.4$ (# of visible pp int./crossing) [2622 bunches, 25ns, 14 TeV].
- We ran in 2012 at $4x10^{32}$ cm⁻²s⁻¹ with µ=1.8 [1262 bunches, 50ns, 8TeV]
- This means 4 times more collisions per crossing than in the design
 - Higher occupancy in the detector, bigger event size
 - More challenging for the trigger \rightarrow LHCb upgrade

Luminosity Levelling:

Semi-continuous (automatic) adjustment of offset of colliding beams to keep the luminosity constant

Routine operation since 2011

Operation: Data Taking

LHCb Integrated Luminosity

- LHCb is performing very well in difficult conditions
 - Four times more interactions per crossing than in the design
 - All detectors over 99% operational
 - Resolutions in position and momentum conform to expectations
- High statistics available, a lot of results expected. Many already published.
- Higher luminosity bottleneck is 1 MHz L0-hardware trigger
 - LHCb upgrade

Two Heavy flavour sessions:

- Wednesday: 14:30 16:30 Heavy Flavours 1
- Friday: 11:00 13:00 Heavy Flavours 2

and LHCb Upgrade on Staturday

