

Higgs to 2 photons in CMS

Fabrice Couderc CMS collaboration

Overvíew

- Introduction
- Analysis flow
- Results
- $H \rightarrow Z\gamma$ search

LHC France, 4 avril 2013

Introduction

Yesterday: discovery regime

- major channel for low mass Higgs searches

- very clean signature:
 - 2 isolated photons
 - narrow peak on top of a smoothly falling background

Today: precise measurement regime

- $m\gamma = 0$, $H\gamma\gamma$ coupling only through loops.
 - small branching fraction (Br ~ 0.0023)
 - very sensitive to any new massive charged particle
- yet sizeable number of events (e.g. compared to $ZZ^* \rightarrow 4\ell$)
 - access to exclusive production modes: VH couplings.

- Tiny signal (S) vs large bkgd (B):
 - \checkmark background determination

GeV

Events / 2

- \checkmark signal discrimination
- Signal discrimination based on:
 - \checkmark event kinematics
 - \checkmark diphoton mass resolution
 - \checkmark jet rejection (shower shape in ECAL and PF isolation)
- Dominant backgrounds:
 - ✓ prompt diphoton: 70%
 - \checkmark photon + jets: 30%
- Control samples:
 - √ Z→ee √ Ζ→μμγ

$$m_{\gamma\gamma} = \sqrt{2} \frac{E_{\gamma 1} E_{\gamma 2}}{\mathbf{ECAL}} \frac{(1 - \cos \theta)}{\mathbf{PVz}}$$

Primary vertex position

- No hard tracks from photons to identify the hard scatter primary vertex (PV).
- PV Z position affects mass resolution if $\sigma_{ZPV} \sim 10 \text{mm}$ ($\sigma_{ZLHC} \sim 5 \text{cm}$)
- PV assignment via MVA method:
 - $\sum p_T{}^2$, vertex recoil vs di γ system, γ conversion pointing
- Additional MVA estimates the per-event probability to identify the correct PV.
- Efficiencies checked in data: $Z \rightarrow \mu \mu$ (w/o tracks) and γ +jets (for γ conversion)

- Two analysis in parallel: two different diphoton event pre-selection
 - \checkmark fully cut-based analysis (CiC) with slightly lower systematic uncertainties
 - \checkmark MVA analysis fully exploits the evt-by-evt properties: kinematic and photon quality
- Similar strategy: split diphoton sample into sub-samples with different S/B:
 - ✓ "exclusive" categories: associated production with jets (VBF) or vector boson (VH)
 - probe VBF and VH production modes
 - higher S/B than inclusive production
 - ✓ "inclusive" categories
 - CiC analysis: 4 categories using the detector-based quality of the event
 - ♦ MVA analysis: 4 categories based on a mass blinded BDT discriminant
- MVA analysis main result: better expected sensitivity

- CiC di-photon pre-selection (for all CiC analysis):
 - $\checkmark \gamma$ identification: cut-based see Elisabeth talk
 - \checkmark cut efficiency controlled in $Z {\rightarrow} ee$ and $Z {\rightarrow} \mu \mu \gamma$
 - \checkmark kinematic cuts: $pT_1/m\gamma\gamma>1/3$, $pT_2/m\gamma\gamma>1/4$, $|\eta_1|<2.5$, $|\eta_2|<2.5$
- CiC inclusive categories based on detector properties:
 - \checkmark barrel vs endcap (different resolution and S/B)
 - ✓ converted (R9 < 0.94) vs unconverted (R9 > 0.94) photon

MVA inclusive categories

- Mass-blinded BDT discriminant:
 - ✓ η₁, η₂, Δφ, pT₁/ m_{YY}, pT₂/ m_{YY}
 - ✓ mass resolution:
 - ♦ ECAL energy resolution per γ
 - Correct PV assignment probability
 - ✓ photon quality: MVAid see Elisabeth
 - ✓ shape and efficiency controlled in Z→ee and Z→µµγ
- MVA di-photon pre-selection (for all MVA analysis):
 - \checkmark γ identification: MVAid > -0.2
 - \checkmark kinematic cuts: same as CiC
 - √ di-γ MVA > -0.05
- 4 MVA inclusive categories

Exclusive categories

- Vector Boson Fusion (VBF): 2 forward jets with a gap in rapidity
 - ✓ CiC analysis : 2 categories 250
 m_{jj} <500GeV and 500GeV < m_{jj}
 - ✓ MVA analysis: 2 categories based on a MVA using photons and jets kinematics (new)
 - ✓ In 2011 only one VBF cat for both analysis

- VH: new in SM analysis for 8TeV dataset
 - ✓ only V leptonic decays $W \rightarrow \ell v$ (2×10%) $Z \rightarrow \ell \ell$

(2x3.5%) Z→vv (20%)

- ✓ electron and muon tag categories: one lepton with pT > 20GeV, $\Delta R(\gamma, \ell) > 1.0$
- ✓ Missing pT tag category: MET > 70GeV

Sígnal & Background model

Background is estimated from data

- \checkmark fit the diphoton mass spectrum with a dedicated background shape
- \checkmark polynomials to accommodate for several potential truth background shape
- ✓ polynomial order: bias below 20% of statistical uncertainties for several truth background shape
- Signal model:
 - \checkmark MC simulation accounting for efficiency scale factor and photon energy resolution correction to match data in several R9 x $\eta\,$ bins.
 - ✓ MVAid and σ_{E_Y}/E_Y [exp] corrected using Z→ee events

Expected signal and estimated background										
Event classes		SM Higgs boson expected signal ($m_{\rm H}$ =125 C/D						Background		
							$\sigma_{ m eff}$	- 3/D +	$m_{\gamma\gamma} = 1$	l 25 GeV
		Total	ggH	VBF	VH	ttH	(GeV)	$(\pm 1.5\sigma_{\rm eff})$	(ev./0	GeV)
7 TeV 5.1 fb ⁻¹	Untagged 0	3.2	61.4%	16.8%	18.7%	3.1%	1.21		3.3	± 0.4
	Untagged 1	16.3	87.6%	6.2%	5.6%	0.5%	1.26		37.5	± 1.3
	Untagged 2	21.5	91.3%	4.4%	3.9%	0.3%	1.59		74.8	± 1.9
	Untagged 3	32.8	91.3%	4.4%	4.1%	0.2%	2.47		193.6	± 3.0
	Dijet tag	2.9	26.8%	72.5%	0.6%	-	1.73		1.7	± 0.2
8 TeV 19.6 fb ⁻¹	Untagged 0	17.0	72.9%	11.6%	12.9%	2.6%	1.36	0.16	22.1	± 0.5
	Untagged 1	37.8	83.5%	8.4%	7.1%	1.0%	1.50	0.08	94.3	± 1.0
	Untagged 2	150.2	91.6%	4.5%	3.6%	0.4%	1.77	0.04	570.5	± 2.6
	Untagged 3	159.9	92.5%	3.9%	3.3%	0.3%	2.61	0.02	1060.9	± 3.5
	Dijet tight	9.2	20.7%	78.9%	0.3%	0.1%	1.79	0.44	3.4	± 0.2
	Dijet loose	11.5	47.0%	50.9%	1.7%	0.5%	1.87	0.14	12.4	± 0.4
	Muon tag	1.4	0.0%	0.2%	79.0%	20.8%	1.85	0.31	0.7	± 0.1
	Electron tag	0.9	1.1%	0.4%	78.7%	19.8%	1.88	0.20	0.7	± 0.1
	$E_{\rm T}^{\rm miss}$ tag	1.7	22.0%	2.6%	63.7%	11.7%	1.79	0.15	1.8	± 0.1

MVA mass spectra

Fabrice Couder

CMS

Mass spectra weighted

All categories weighted with S/(S+B) 7 + 8 TeV dataset

Systematic uncertainties

Sources of systematic uncertainty	Uncertainty			
Per photon		Barrel	Endcap	
Energy resolution ($\Delta \sigma / E_{MC}$)	$R_9 > 0.94$ (low η , high η)	0.23%, 0.72%	0.93%, 0.36%	
	$R_9 < 0.94$ (low η , high η)	0.25%, 0.60%	0.33%, 0.54%	
Energy scale $((E_{data} - E_{MC})/E_{MC})$	$R_9 > 0.94$ (low η , high η)	0.20%, 0.71%	0.88%, 0.12%	
	$R_9 < 0.94$ (low η , high η)	0.20%, 0.51%	0.18%, 0.12%	
Photon identification efficiency		1.0%	2.6%	
Cut-based				
$R_9 > 0.94$ efficiency (results in class	migration)	4.0%	6.5%	
MVA analyses				
Photon identification BDT		± 0.01 (shape shift)		
(Effect of up to	4.3% event class migration.)	$\pm 10\%$ (shape scaling)		
Photon energy resolution BDT				
(Effect of up to 8.1% event class migration.)				
Per event				
Integrated luminosity		4.4%		
Vertex finding efficiency		0.2%		
Trigger efficiency		1.0%		
Global energy scale	0.47%			
Dijet selection				
Dijet-tagging efficiency	10%			
G	30%			
(Effect of up to 15% event migration among dijet classes.)				
Muon selection				
Muon identification efficiency	1.0%			
Electron selection				
Electron identification efficiency		1.0%		
E _T ^{miss} selection				
$E_{\rm T}^{\rm miss}$ cut efficiency	Gluon-gluon fusion	15	%	
	Vector boson fusion	15%		
Associa	4%			
Ass	4%			
Production cross sections	Scale	PDF		
Gluon-gluon fusion	+7.6%-8.2%	+7.6% -7.0%		
Vector boson fusion	+0.3% -0.8%	+2.6% -2.8%		
Associated production with W/Z	+2.1% -1.8%	4.2%		
Associated production with tt	+4.1% -9.4%	8.0%		

Fabrice Couderc

H→γγ @ CMS

results p-value

7 + 8 TeV dataset

results: channel compatibility

Comparison with published result: 7TeV results are identical, 8TeV signal strength is significantly smaller (new data + re-analysis of 8TeV data)

Fabrice Couderc

CMS

H→γγ @ CMS

CMS

CíC vs MVA analysis compatibility

 μ compatibility

I.5 σ

- Two analysis found somewhat different results on the same dataset
- Low S/B: uncertainty on µ due to background statistical fluctuation
- Correlation between the 2 analysis is measured using JackKnife technique (M. Quenouille 1949, J.W. Tukey 1958):
 - ✓ split sample in several subsamples to get the variance and extrapolate back to full sample
 - ✓ correlation between CiC and MVA r = 0.76

test

CiC vs MVA 7+8 TeV

CiC vs MVA 8 TeV	Ι.8 σ		
published vs new MVA 8TeV/5.3fb ⁻¹	Ι.6 σ		
published vs new CiC 8TeV/5.3fb ⁻¹	0.5 σ		

- Huge number of tests performed: all within 2σ

Some diphoton MVA checks

Inputs to the MVA are validated with $Z \rightarrow ee$ and $Z \rightarrow \mu \mu \gamma$

- S y s t e m a t i c uncertainties:
- Mvaldy within $\pm 1\sigma$
- $\sigma_{E\gamma}/E_{\gamma}$ within $\pm 1\sigma$

H→γγ @ CMS

Fabrice Couderc

CMS

CMS

Production mechanisms

Mass determination

Fabrice Couderc

CMS

H→γγ @ CMS

Similar decay as $H \rightarrow \gamma \gamma$ in SM (same loops), might be quite different in BSM models Selection: 2 isolated leptons + 1 isolated photons with:

- $m(\ell \ell) > 50 GeV$ kills conversions
- m($\ell\ell\gamma$)+m($\ell\ell$) > 185GeV against Z radiative decays
- $\Delta R(\ell,\gamma) > 0.4$
- $p_T(\gamma)/m(\ell \gamma) > 15/110$

Categorisation: 4 categories based on 3-body mass resolution

Fabrice Couderc

- CMS $H \rightarrow \gamma \gamma$ analysis with 5.1 fb⁻¹@7TeV + 19.6 fb⁻¹@8TeV: HIG-13-001
- CMS $H \rightarrow Z\gamma$ search with 5.1fb⁻¹@7TeV + 19.6fb⁻¹@8TeV: HIG-13-006

 $= 0.8 \pm 0.3$

- $H \rightarrow \gamma \gamma \gamma 2$ analysis presented. MVA analysis signal strength:
- The 2012 dataset decreases the signal strength (both MVA and CiC analysis) which is now very consistent with SM
- Higgs mass:

 $m_{H} = 125.4 \pm 0.5 \pm 0.6 \text{ GeV}$

- More to come:
 - ECAL calibration not yet final, expect sizeable improved resolution
 - Analysis developments (?)
 - Spin analysis...

backup

y identification

July 2012 publication

CMS

Fabrice Couderc

Higgs @ IRFU, 2012

Categories:

Г

	e ⁺ e ⁻ γ	$\mu^+\mu^-\gamma$					
	Event cla	ss 1					
	Photon $0 < \eta < 1.4442$	Photon $0 < \eta < 1.4442$					
	Both leptons $0 < \eta < 1.4442$	Both leptons $0 < \eta < 2.1$					
		and one lepton $0 < \eta < 0.9$					
	$R_9 > 0.94$	$R_9 > 0.94$					
Data	17%	20%					
Signal	30%	34%					
Veff	1.9 GeV	1.6 GeV					
FWHM	4.5 GeV	3.7 GeV					
	Event class 2						
	Photon $0 < \eta < 1.4442$	Photon $0 < \eta < 1.4442$					
	Both leptons $0 < \eta < 1.4442$	Both leptons $0 < \eta < 2.1$					
	1	and one lepton $0 < \eta < 0.9$					
1	$R_9 < 0.94$	$R_9 < 0.94$					
Data	26%	31%					
Signal	28%	31%					
Teff	2.1 GeV	1.9 GeV					
FWHM	5.0 GeV	4.6 GeV					
	Event class 3						
	Photon $0 < \eta < 1.4442$	Photon $0 < \eta < 1.4442$					
	At least one lepton $1.4442 < \eta < 2.5$	Both leptons in $ \eta > 0.9$					
		or one lepton in 2.1 $< \eta < 2.4$					
	No requirement on R ₉	No requirement on R9					
Data	26%	20%					
Signal	23%	18%					
Teff	3.1 GeV	2.1 GeV					
FWHM	7.3 GeV	5.0 GeV					
	Event class 4						
	Photon 1.566 < $ \eta $ < 2.5	Photon 1.566 < $ \eta $ < 2.5					
	Both leptons $0 < \eta < 2.5$	Both leptons $0 < \eta < 2.4$					
	No requirement on R ₉	No requirement on R ₉					
Data	31%	29%					
Signal	19%	17%					
Teff	3.3 GeV	3.2 GeV					
FWHM	7.8 GeV	7.5 GeV					

Fabrice Couderc

Systematics

Source	7 TeV	8 TeV
Integrated luminosity	2.2%	4.4%
Theory		
- Gluon-gluon fusion cross section (scale)	+12.5% -8.2%	+7.6% -8.2%
- Gluon-gluon fusion cross section (PDF)	+7.9% -7.7%	+7.6% -7.0%
- Vector boson fusion cross section (scale)	+0.5% -0.3%	+0.3% -0.8%
- Vector boson fusion cross section (PDF)	+2.7% -2.1%	+2.8% -2.6%
- W associate production (scale)	+0.7% -0.8%	+0.2% -0.7%
- W associate production (PDF)	+3.5% -3.5%	+3.5% -3.5%
- Z associate production (scale)	+1.7% -1.6%	+1.9% -1.7%
- Z associate production (PDF)	+3.7% -3.7%	+3.9% -9.7%
- Top pair associate production (scale)	+3.4% -9.4%	+3.9% -9.3%
- Top pair associate production (PDF)	+8.5% -8.5%	+7.9% -7.9%
Branching fraction	6.7%,9.4% -6.7%,-9.3%	6.7%,9.4% -6.7%,-9.3%
Trigger		
- Electron	0.5%	2.0%
- Muon	0.5%	3.5%
Selection	100.000	
- Photon Barrel	0.5%	0.6%
- Photon Endcap	1.0%	1.0%
- Electron	0.8%	0.8%
- Muon	0.7%	1.4%
Signal scale and resolution		
- Mean	1.0%	1.0%
- Sigma	5.0%	5.0%
Event migration	5.0%	5.0%
Pileup		
- Electron	0.6%	0.8%
- Muon	0.4%	0.4%

 $\mathcal{H} \rightarrow Z\gamma$ search

eeγ

Fabrice Couderc

31

 $\mathcal{H} \rightarrow Z\gamma$ search

μμγ

Fabrice Couderc