

Marc Grabalosa

LPC - ClermontFerrand

- Motivation
- Analysis strategy
- Preliminary unofficial results

• Flavour physics & CKM triangles

The quarks that interact via the weak interaction are superpositions of mass eigenstates.

The Cabibbo-Kobayashi-Maskawa (CKM) matrix links the mass eigenstates for the down-type quarks, with the weak eigenstates.

$$V_{CKM} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

- Measurement of angle $\boldsymbol{\alpha}$
 - The time-dependent CP asymmetry in B meson decaying to CP eigenstates measures sin2 α_{eff} which is dominated by the tree-level amplitude b—uud
 - $\alpha_{eff} = arg[-V_{td}V_{tb}^*/V_{ud}V_{ub}^*]$ (Tree) + $\Delta\alpha$ (Penguin)
 - $B^0 \rightarrow \rho^0 \rho^0$ is color supressed and sensitive to the penguin amplitude
 - Accessible through isospin analysis or time-dependent Dalitz analysis

• The extraction of α from B $\rightarrow \pi\pi(\rho\rho)$ BRs and A_{CP} is a simple geometrical problem

 $\int 2 A^{+0} = \int 2 A(B_u \to \pi^+ \pi^0) = e^{-i\alpha} (T^{+-} + T^{00})$ $A^{+-} = A(B_d \to \pi^+ \pi^-) = e^{-i\alpha} T^{+-} + P^{+-}$ $\int 2 A^{00} = \int 2 A(B_d \to \pi^0 \pi^0) = e^{-i\alpha} T^{00} - P^{+-}$

- Using WA measurements, both $B \rightarrow \pi \pi (\rho \rho)$ SU(2) triangles do not close
 - The fact that triangles do not close is a further constraint to α . LHCb can help to remove this lucky situation.
 - Mirror solutions collapse → 2-fold a solution

- Motivation

 - Along this program some Bs decays should show up
 - Belle measurement **B**-factory status **BABAR** measurement WA 1 - CL = 32% (no fL⁰⁰/B⁰⁰ meas. in fit) 10 30 evidence at both BaBar & Belle 8 $BR_{WA} = (0.96 \pm 0.27) \times 10^{-6}$ -B(ρ°ρ°)×10⁶ Measured BR, f_1 (& C^{00} , S^{00} BaBar) \rightarrow major impact on α extraction based signal evidence only! 4 Recent Belle update @ CKM12 : -2 small f_L measured (2.5 σ from Babar) Hint for $B \rightarrow \rho^0 \rightarrow \rho^0 f^0$ ٠ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 $fL(\rho^{\circ}\rho^{\circ})$

Stripping & Trigger

Use Quasi2Body stripping lines:

Build displaced V₁($\pi\pi$)V₂($\pi\pi$) with M($\pi\pi$) · 1 GeV and pT(V) · 600 GeV (quality vertex χ 2 < 9) B pt > 2.5 GeV, B vertex quality χ 2 < 6, B mass [3.8 - 5.7] Gev/c²

LO Hadron trigger plus reconstruction of 2,3,4 bodydecay

Selection

Obvious sanity cuts (IP, sanity check,...)

Multivariate selection (BDT)

- Use $\rho^0\rho^0$ to train the smaple
- Isolation, pointing, flight distance B
- IP, pt (hadrons and $\pi\pi$ or K π)

Particel Identification (RICH) Mass cuts:

```
\begin{array}{lll} M(\rho) \pm 225 \ \text{MeV}/c^2 \ (\pi\pi) \\ M(K^*) \pm 100 \ \text{MeV}/c^2 \ (K\pi) \\ \text{anti-D cuts} & \text{Mijk} > 2.1 \ \text{GeV}, \ |\text{Mij} \ (K\pi)-\text{MD}|>30 \\ \text{anti-J/\psi cuts} & |\text{Mij-MJ/\psi}|>30 \ \& \ \text{isMuon==0} \\ \text{anti} \ \Lambda \ \text{cuts} & M_{ij} < 2.5 \ \text{GeV} \end{array}
```


B→ (ππ) (ππ) Fit model

Simultaneous fit of $B_{(s)} \rightarrow (\pi\pi)(\pi\pi)$, $B_{(s)} \rightarrow (K\pi)(\pi\pi)$, $B_{s(d)} \rightarrow (K\pi)(\pi K)$ mass distributions

 $\#B_{n} \rightarrow (\pi^{\dagger}\pi^{\dagger})(\pi^{\dagger}\pi^{\dagger})$

Signal

- bifurcated CB with tails parameters fixed from MC

- single resolution parameter for $\rm B_{d}$ & $\rm B_{s}$ signal (free)
- constrained M_{Bs} - M_{Bd} = 86.8±0.5 MeV/c²

Background

- Peaking background vetoed by PID cuts
- Cross feed bkg from misID (i.e π misID as K)
- Partially reconstructed bkg (missing $\pi/\gamma)$

(free exp)

 $\textbf{Argus} \oplus \textbf{Gauss}(\sigma_{B})$

$$A(m:m_t,c,p) = \frac{m}{m_t^2} (1 - \frac{m^2}{m_t^2})^p \exp\left[-\frac{1}{2}c^2(1 - \frac{m^2}{m_t^2})\right]$$

~ 3fb⁻¹ from 2011 + 2012 data

Signal resolution σ ~ 18MeV/c²

Clear contributions of: Bs $\rightarrow 4\pi$, Bs $\rightarrow K^*\pi\pi$ and Bd $\rightarrow K^*K^*$

Fit model nearly ready: – $\Lambda(1520)$ MC already asked A full angular analysis will be applied but a preliminary fit model for the $\pi\pi$ lineshape can be extracted using sWeights

 $fO(980)[Flatte] + \rho^0 [BW] + fO(600)[BW] + f2(1270)[BW]$ Parameters fixed from BES and Syracuse studies

 $\pi\pi$ lineshapes fit model

ππ lineshape in B→ (Kπ)(ππ)

 $\pi\pi$ lineshape in B \rightarrow ($\pi\pi$)($\pi\pi$)

 \rightarrow Work ongoing through Angular analysis

• Branching fraction: use $B_s \rightarrow K^*K^*[(K\pi)(\pi K)]$ as normalization channel

$$\begin{aligned} \mathcal{B}(B^0_{d,s} \to h^{\pm}h^{\pm}h^{\pm}) = &\lambda_{f_L} \times \frac{\epsilon_{TotSel}^{B^0_s \to K^{*0}K^{*0}}}{\epsilon_{TotSel}^{B^0_{d,s} \to h^{\pm}h^{\pm}h^{\pm}h^{\pm}}} \times \frac{\epsilon_{PID}^{B^0_s \to K^{*0}K^{*0}}}{\epsilon_{PID}^{B^0_{d,s} \to h^{\pm}h^{\pm}h^{\pm}h^{\pm}}} \times \frac{N(B^0_{d,s} \to h^{\pm}h^{\pm}h^{\pm}h^{\pm})}{N(B^0_s \to K^{*0}K^{*0})} \\ &\times \frac{f_s}{f_{(d,s)}} \times BR_{vis}(B^0_s \to K^{*0}K^{*0}) \end{aligned}$$

Very promising results ahead

Stay tuned !

- Clear $(\pi\pi)(\pi\pi)$ signal from both B_d and B_s
 - Very promising with the full 3 fb⁻¹
 - Analysis based on a simultaneous fit with $(K\pi)(\pi\pi) \& (K\pi)(K\pi) Q2B$ decays
- Selection & Fit Model
 - Stripping, triggers and BTD used in selection process are ready
 - Fit model:
 - Signal: defined & modeled (biCB)
 - Bkg: identified and modeled (fixed yield when possible, missing Λ_b)
 - Ready for ToyMC
 - Efficiencies: (MCgeneration, Reco-Strip-Sele, PID, trigger) nearly ready
 - Systematics: Work started
- Angular analysis
 - Huge work ahead, but work started
- Promising results ahead:
 - Unofficial preliminary significance > 5σ
 - BR $[B \rightarrow (\pi\pi)(\pi\pi)]$ measurement expected soon - B_s-> K*K* $[(K\pi)(\pi K)]$ as normalization channel

BackUp

Variable Definition	StrippingBetaSQ2B4piSelection
B candidates selection cuts	
Transverse momentum of the B candidate	$p_{T} > 2500 \text{ MeV}/c$
Min Mass of 4π	$M_{\pi\pi\pi\pi} > 3.8 \text{GeV}/c^2$
Max Mass of B	$M_B < 5.7 \text{GeV}/c^2$
Max Corrected B Mass	$< 6 \text{GeV}/c^2$
χ^2 of B vertex fit	$\chi^2_{Bvux} < 6$
Vector meson selection Cuts	
Transverse momentum of the resonance candidate	$p_{\rm T} > 600 {\rm MeV}/c$
Mass of the resonance candidate	$M_{\pi(K)\pi(K)} < 1 \text{ GeV}/c^2$
χ^2 of resonance vertex fit	$\chi^2_{(\pi\pi)\rm vix} < 9$
Hadron selection Cuts	
Track ghost probability	GhostProb < 0.5
IP wrt PV	IP > 25 mm

• A preselection to reduce the background level based on sanity cuts

Variable	Cut
B_FDCH12_OWNPV	> 20
B_IPCHI2_OWNPV	< 30
B_DIRA_OWNPV	> 0.999
B_ENDVERTEX_CH12/B_ENDVERTEX_NDOF	< 20
B_PT	> 1200(2500)
B_SMALLESTDELTACHI2	> 0.3
V_ENDVERTEX_CHI2	< 20
V_PT	> 200
V_AM	$M(\rho) \pm 300, M(K^*) \pm 200$
h_P	< 100000
h_TRACK_GhostProb	< 0.5
h_isMuon	== 0
h_IPCHI2_OWNPV	> 5
h_PT	> 100

Variable	Description		BDT 2
log10(B_SMALLESTDELTACHI2)	Isolation of the B vertex ¹	0.225	0.224
B_ENDVERTEX_CHI2/B_ENDVERTEX_NDOF	B vertex fit	0.224	0.218
Max(h_TRACK_CHI2NDOF)	hadron track quality	0.143	0.148
Min(log10(h_IPCHI2_OWNPV))	Minimal hadron IP significance w.r.t PV	0.136	0.123
<pre>Max(log10(V_IPCHI2_OWNPV))</pre>	Maximal meson (ρ^0, K^{*0}) IP significance w.r.t PV	0.134	0.132
log10(B_FDCH12_OWNPV)	B flight distance w.r.t PV	0.132	0.128
log10(1.0-Abs(B_DIRA_OWNPV)	B pointing angle	0.131	0.130
B_PT	B tranverse momentum	0.081	0.080
Min(V_PT)	Minimal meson transverse momentum	0.073	0.070
Min(h_PT)	Minimal hadron transverse momentum	0.055	0.064
log10(B_IPCHI2_OWNPV)	B IP significance w.r.t PV	0.045	0.043

SELECTION: BDT variables correlations

Correlation Matrix (signal)

Correlation Matrix (background)

• Generator efficiencies

Channel	particle	antiparticle	average
$B_s^0 \rightarrow K^{*0} K^{*0}$	$16.59 \pm 0.08\%$	$16.59 \pm 0.08\%$	$16.59 \pm 0.06\%$
$B^0 \rightarrow \rho^0 \rho^0$	$15.60\pm0.07\%$	$15.42\pm0.07\%$	$15.51\pm0.05\%$
$B^0\!\to K^{*0}\rho^0$	$15.90\pm0.08\%$	$15.75\pm0.08\%$	$15.83 \pm 0.05\%$

• Reconstruction, stripping and selection

Channel	Magnet Up	Magnet Down	Average
$B_s^0 \rightarrow K^{*0} K^{*0}$	$1.212 \pm 0.012\%$	-	$1.212 \pm 0.012\%$
$B^0 \to \rho^0 \rho^0 \ Long$	$0.322 \pm 0.006\%$	$0.322\pm0.006\%$	$0.322\pm0.004\%$
$B^0 \rightarrow \rho^0 \rho^0 Trans$	$1.586\pm0.019\%$	$1.562\pm0.026\%$	$1.577\pm0.016\%$
$B^0\!\to K^{*0}\rho^0$	$1.475\pm0.016\%$	$1.492 \pm 0.013\%$	$1.486 \pm 0.010\%$

Channel	Magnet Up	Magnet Down	Average
$B_s^0 \to K^{*0} K^{*0}$ reco as $B \to K^{*0} \rho^0$	$1.238 \pm 0.012\%$	-	$1.238 \pm 0.012\%$
$B^0 \rightarrow \rho^0 \rho^0 \ Long$ reco as $B \rightarrow K^{*0} \rho^0$	$0.365 \pm 0.006\%$	$0.359 \pm 0.006\%$	$0.362 \pm 0.004\%$
$B^0 \to \rho^0 \rho^0 T^{rans}$ reco as $B \to K^{*0} \rho^0$	$1.588 \pm 0.019\%$	$1.578 \pm 0.026\%$	$1.585 \pm 0.016\%$
$B^0 \to K^{*0} \rho^0$ reco as $B \to \rho^0 \rho^0$	$1.020\pm0.013\%$	$1.040 \pm 0.011\%$	$1.032 \pm 0.009\%$
$B^0 \! \to K^{*0} \rho^0$ reco as $B \! \to K^{*0} K^{*0}$	$0.644 \pm 0.011\%$	$0.613 \pm 0.008\%$	$0.612 \pm 0.007\%$

• Trigger efficiencies

Channel	Magnet Up	Magnet Down	Average
$B_s^0 \rightarrow K^{*0} K^{*0}$	$87.72 \pm 0.32\%$	-	$87.72 \pm 0.32\%$
$B^0 \rightarrow \rho^0 \rho^0 \ Long$	$87.36 \pm 0.59\%$	$86.72 \pm 0.63\%$	$87.06\pm0.43\%$
$B^0 \rightarrow \rho^0 \rho^0 Trans$	$87.89 \pm 0.40\%$	$87.03 \pm 0.56\%$	$87.59 \pm 0.33\%$
$B^0 \rightarrow K^{*0} \rho^0$	$87.09 \pm 0.37\%$	$87.60\pm0.29\%$	$87.41 \pm 0.23\%$

Channel	Magnet Up	Magnet Down	Average
$B_s^0 \to K^{*0} K^{*0}$ reco as $B \to K^{*0} \rho^0$	$87.89 \pm 0.32\%$	-	$87.89 \pm 0.32\%$
$B^0 \to \rho^0 \rho^0 \ ^{Long}$ reco as $B \to K^{*0} \rho^0$	$87.07 \pm 0.56\%$	$87.16 \pm 0.59\%$	$87.11 \pm 0.41\%$
$B^0 \to \rho^0 \rho^0 T^{rans}$ reco as $B \to K^{*0} \rho^0$	$87.42 \pm 0.41\%$	$86.66 \pm 0.57\%$	$87.15 \pm 0.33\%$
$B^0 \to K^{*0} \rho^0$ reco as $B \to \rho^0 \rho^0$	$87.48 \pm 0.44\%$	$87.58 \pm 0.35\%$	$87.54 \pm 0.28\%$
$B^0 \! \to K^{*0} \rho^0$ reco as $B \! \to K^{*0} K^{*0}$	$86.35 \pm 0.60\%$	$87.53 \pm 0.46\%$	$87.07 \pm 0.36\%$

To be redone with the proper configuration adapted to different runing conditions during 2011 and 2012

 \rightarrow Split according to TCK 'categories'

• PID efficiencies

Use the PIDCalib tool to reweight track PID according to variables to which the DLL distribution is sensitive

 \rightarrow Bining in momentum and pseudorapidity

$B \to \rho^0 \rho^0$ All	Magnet Up	Magnet Down	Average
$\pi^- \rightarrow \pi^-$	$87.766 \pm 0.052\%$	$87.993 \pm 0.051\%$	$87.858 \pm 0.051\%$
$\pi^+ \to \pi^+$	$87.811 \pm 0.050\%$	$87.592 \pm 0.050\%$	$87.723 \pm 0.050\%$
$ ho^0 ightarrow ho^0$	$77.065 \pm 0.072\%$	$77.019 \pm 0.072\%$	$77.047\pm0.072\%$
$\pi^- \to \pi^-$	$88.364 \pm 0.050\%$	$89.048 \pm 0.049\%$	$88.639 \pm 0.049\%$
$\pi^+ \to \pi^+$	$88.704 \pm 0.051\%$	$89.182 \pm 0.047\%$	$88.897 \pm 0.049\%$
$\rho^0 \rightarrow \rho^0$	$78.304 \pm 0.072\%$	$79.317 \pm 0.069\%$	$78.712 \pm 0.070\%$
$\rho^0\rho^0\to\rho^0\rho^0$	$60.350 \pm 0.107\%$	$61.044 \pm 0.104\%$	$60.629\pm0.106\%$
$4\pi \to K3\pi$	$1.438 \pm 0.071\%$	$1.416 \pm 0.066\%$	$1.429 \pm 0.069\%$

• PID efficiencies

$B \rightarrow K^{*0} \rho^0$	Magnet Up	Magnet Down	Average
$\pi^- \rightarrow \pi^-$	$88.099 \pm 0.051\%$	$89.272 \pm 0.047\%$	$88.816 \pm 0.048\%$
$\pi^+ \rightarrow \pi^+$	$88.406 \pm 0.049\%$	$88.979 \pm 0.048\%$	$88.756 \pm 0.049\%$
$ ho^0 ightarrow ho^0$	$77.892 \pm 0.070\%$	$79.455 \pm 0.068\%$	$78.847 \pm 0.068\%$
$\pi^- \to \pi^-$	$88.716 \pm 0.046\%$	$88.854 \pm 0.045\%$	$88.800 \pm 0.045\%$
$K^+ \rightarrow K^+$	$73.947 \pm 0.063\%$	$74.044 \pm 0.061\%$	$74.006 \pm 0.062\%$
$K^{*0} \rightarrow K^{*0}$	$65.853 \pm 0.071\%$	$66.057 \pm 0.069\%$	$65.977 \pm 0.070\%$
$K^{*0}\rho^0 \to K^{*0}\rho^0$	$51.155 \pm 0.100\%$	$52.415\pm0.097\%$	$51.925 \pm 0.096\%$
$K3\pi \rightarrow 4\pi$	$3.340 \pm 0.101\%$	$3.391 \pm 0.097\%$	$3.371 \pm 0.099\%$
$K3\pi \to K\pi K\pi$	$1.227 \pm 0.084\%$	$1.142\pm0.082\%$	$1.175 \pm 0.083\%$

$B \rightarrow K^{*0} K^{*0}$	Magnet Up	Magnet Down	Average
$K^- \rightarrow K^-$	$89.557 \pm 0.050\%$	-	$89.557 \pm 0.050\%$
$\pi^+ ightarrow \pi^+$	$88.261 \pm 0.046\%$	-	$88.261 \pm 0.046\%$
$K^{*0} \rightarrow K^{*0}$	$79.110 \pm 0.066\%$	-	$79.110 \pm 0.066\%$
$\pi^- ightarrow \pi^-$	$88.247 \pm 0.048\%$	-	$88.247 \pm 0.048\%$
$K^+ \rightarrow K^+$	$74.125 \pm 0.062\%$	-	$74.125 \pm 0.062\%$
$K^{*0} \rightarrow K^{*0}$	$65.561 \pm 0.071\%$	-	$65.561 \pm 0.071\%$
$K^{*0}K^{*0}\to K^{*0}K^{*0}$	$51.814 \pm 0.097\%$	-	$51.814 \pm 0.097\%$
$K\pi K\pi \to K3\pi$	$3.119 \pm 0.096\%$	-	$3.119 \pm 0.096\%$

 \vec{e}_1, \vec{e}_2 : Polarization vectors \hat{p} : Unit vector along the direction of motion of V₂

Angular analysis

 $A(B \rightarrow V_1 V_2) = A_0 \varepsilon_1^{*L} \varepsilon_2^{*L} - \frac{A_{\parallel}}{\sqrt{2}} \vec{\varepsilon}_1^{*T} \cdot \vec{\varepsilon}_2^{*T} - i \frac{A_{\perp}}{\sqrt{2}} (\vec{\varepsilon}_1^{*T} \times \vec{\varepsilon}_2^{*T}) \cdot \hat{p}$ (Odd under T) (Odd under T) (Odd under T)transformations) opposite sign Applying CP on $A(B \rightarrow V_1 V_2)$: (Amplitude for the

 $A(\overline{B} \to \overline{V_1}\overline{V_2}) = \overline{A_0}\varepsilon_1^{*L}\varepsilon_2^{*L} - \frac{\overline{A_{\parallel}}}{\sqrt{2}}\vec{\varepsilon}_1^{*T} \cdot \vec{\varepsilon}_2^{*T} + i\frac{\overline{A_{\perp}}}{\sqrt{2}}(\vec{\varepsilon}_1^{*T} \times \vec{\varepsilon}_2^{*T}) \cdot \hat{p} \quad \text{(Amplitude for CP-conjugated process)}$ process)

Triple product

$$V = sign(\cos\theta_{1}\cos\theta_{2})\sin\varphi = sign(\cos\theta_{1}\cos\theta_{2})(\hat{n}_{1} \times \hat{n}_{2}) \cdot \hat{p}_{1}$$

$$U = \frac{\sin 2\varphi}{2} = 2(\hat{n}_{1} \cdot \hat{n}_{2})(\hat{n}_{1} \times \hat{n}_{2}) \cdot \hat{p}_{1}$$

$$A_{V} = \frac{N_{V}^{+} - N_{V}^{-}}{N_{V}^{+} + N_{V}^{-}} = -\frac{2\sqrt{2}}{\pi} \frac{\operatorname{Im}(A_{\perp}A_{0}^{*})}{|A_{0}|^{2} + |A_{\parallel}|^{2} + |A_{\perp}|^{2}}$$

$$A_{U} = \frac{N_{U}^{+} - N_{U}^{-}}{N_{U}^{+} + N_{U}^{-}} = -\frac{4}{\pi} \frac{\operatorname{Im}(A_{\perp}A_{0}^{*})}{|A_{0}|^{2} + |A_{\parallel}|^{2} + |A_{\perp}|^{2}}$$

ñ, n, θ. R^0 K

Decay amplitudes

$$A(B \rightarrow V_1 V_2) = A_0 \cos\theta_1 \cos\theta_2 + \frac{A_{\parallel}}{\sqrt{2}} \sin\theta_1 \sin\theta_2 \cos\varphi + i\frac{A_{\perp}}{\sqrt{2}} \sin\theta_1 \sin\theta_2 \sin\varphi \qquad f_{\perp} = \frac{|A_0|^2}{|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2}$$

$$f_{\perp} = \frac{|A_{\perp}|^2}{|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2}$$

$$f_{\parallel} = \frac{|A_{\parallel}|^2}{|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2}$$

$$f_{\parallel} = \frac{|A_{\parallel}|^2}{|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2}$$

Refit assuming no Bd or Bs peak (use NLL)

• Yields from crossfeeds are fixed

All peaks above 5σ

