B_(d,s)→Kshh decays in LHCb

Diego Milanés LPNHE, Paris, France LHC France 2013, 2-6 April 2013, Annecy, France

- **b** \rightarrow **q** \overline{q} **s and current measurements**
- Selection of events
- → Fit model
- Systematic uncertainties
- Results
- Current status and future plans

 $A_{CP}(\Delta t) = S_f \sin(\Delta m t) + C_f \cos(\Delta m t)$

 $\begin{array}{l} \mbox{Mixing induced CP} \\ \mbox{asymmetries in } b \rightarrow c \overline{c} s, \\ \mbox{S}_{f} \sim sin2\beta, \mbox{ expected to be} \\ \mbox{almost equal to } b \rightarrow q \overline{q} s, \\ \mbox{according to the SM.} \\ \mbox{S}_{c \overline{c} s} = \mbox{S}_{q \overline{q} s} + \mbox{\Delta} \mbox{S}_{SM} = -\eta_{CP} sin2\beta \end{array}$

b→c̄cs tree level golden mode B⁰→J/ψKs

b→qqs penguin dominated

NP contribution from new particles in the loop. New phases might affect the measurement of CKM angle β

b→qqs decays

Theoretical prediction for ΔS_{SM}

		-1-1	1		-11 /4	DRELIMINARY
b-ccs	World Av	erade	inin Kintissini	Linnettiniste difference	inienies Alterities in the mat	0.68 ± 0.02
C.	BaBar				0.26	$\pm 0.26 \pm 0.03$
¥ ¥	Belle					0.90 +0.09
0	BaBar				0.57	$\pm 0.08 \pm 0.02$
×	Belle			-	• 0.64	± 0.10 ± 0.04
Y	BaBar				0.9	4 +0.21 ± 0.06
Y	Belle				0.30	± 0.32 ± 0.08
e Y	BaBar				0.55	± 0.20 ± 0.03
on the	Belle			-	0.67	± 0.31 ± 0.08
yo yo	BaBar				0.35 +0.26	± 0.06 ± 0.03
bo	Belle				0.64 +0.19	± 0.09 ± 0.10
So	BaBar				- 0.5	5 +0.26 ± 0.02
3	Belle			•	0.11	± 0.46 ± 0.07
So	BaBar				-	0.60 +0.16
t.	Belle				-	0.63 +0.16
f ₂ K _s	BaBar		+		0.48 ± 0.52	± 0.06 ± 0.10
f _x K _s	BaBar				0.20 ± 0.52	± 0.07 ± 0.07
$\pi^0 \pi^0 K_s$	BaBar				-0.72	± 0.71 ± 0.08
$\phi \pi^0 K_S$	BaBar					0.97 +0.03
π'π Ks	RaBar			-	0.01 ± 0.31	$\pm 0.05 \pm 0.09$
Y	BaBar				•••• 0.86	$\pm 0.08 \pm 0.03$
¥.	Belle			H	-0.68 ± 0.1	$15 \pm 0.03 \substack{+0.21 \\ -0.13}$
b→qqs	Naïve av	erage		•		0.64 ± 0.04
-2			0	a nagana na	1	2
	ein'	2R/h		- e)=0	68+0	02
	3111	-h(n		, 3 , - 0	.00±0	
	sin	2R/h.	—>u	N=lar	64+0	04

 $sin(2\beta^{eff}) \equiv sin(2\phi_1^{eff})$ HFAG

$b \rightarrow q\bar{q}s @ LHCb$

- → B_(d,s)→K_Sπ⁺π⁻, K_SK⁺K⁻, K_SK[±]π[∓] 3-body (b→qq̄s) decays.
 ⇒ The resonant structure has information on sin2β.
- → Rare decays (BF~10⁻⁶) \Rightarrow long way to phase extraction.

First step, is to establish the branching fraction of these modes, using 1/fb of 2011 data (LHCb-CONF-2012-023). Simplest: time integrated and flavor-tag averaged

- → LHC produce copious amounts of B_(u,d,s) mesons. LHCb is well suited to look for rare decays
- ➡ B_d decays studied in B-factories
- B_s decays not studied so far (Tree level dominated, theoretically cleaner, in some of them information on γ+β_s, PLB645(2007)201-203)

Doory mode	Branching fraction (10^{-6})				
Decay mode	BaBar	Belle	World average		
$B^0 \rightarrow K^0 \pi^+ \pi^-$	50.2 ± 2.3	47.5 ± 4.4	49.6 ± 2.0		
$B^0 \rightarrow K^0 K^{\pm} \pi^{\mp}$	6.4 ± 1.2	< 18	6.4 ± 1.2		
$B^0 \rightarrow K^0 K^+ K^-$	23.8 ± 2.6	28.3 ± 5.2	24.7 ± 2.3		

Event reconstruction

Vetoes, BDT and PID criteria

- Background rejection using a multivariate discriminant, BDT. Flight distances, impact parameters, B transverse momenta and direction angle
- Veto of fully reconstructed 2body decays with charm.
 ΔM ~ ±30MeV rejected.
- PID requirement using mostly Cherenkov detectors information. ~85-90% efficiency with ~5-10% misID

Fit model

Fit projections

Dalitz plot distributions

B signal mass window, no bkg subtracted nor efficiency corrected distributions

Branching fractions ratio

BF relative to $B^0 \rightarrow K_S \pi^+ \pi^-$

 $\frac{\mathcal{B}\left(B^{0}_{d,s}\to K^{0}_{\mathrm{S}}h^{\pm}h'^{\mp}\right)}{\mathcal{B}\left(B^{0}\to K^{0}_{\mathrm{S}}\pi^{+}\pi^{-}\right)} = \frac{\epsilon^{\mathrm{sel.}}_{B^{0}\to K^{0}_{\mathrm{S}}\pi^{+}\pi^{-}}}{\epsilon^{\mathrm{sel.}}_{B^{0}_{d,s}\to K^{0}_{\mathrm{S}}h^{\pm}h'^{\mp}}} \frac{\epsilon^{\mathrm{PID}}_{B^{0}\to K^{0}_{\mathrm{S}}\pi^{+}\pi^{-}}}{\epsilon^{\mathrm{PID}}_{B^{0}_{d,s}\to K^{0}_{\mathrm{S}}h^{\pm}h'^{\mp}}} \frac{N_{B^{0}_{d,s}\to K^{0}_{\mathrm{S}}h^{\pm}h'^{\mp}}}{N_{B^{0}\to K^{0}_{\mathrm{S}}\pi^{+}\pi^{-}}} \frac{f_{d}}{f_{d,s}}$

ε^{sel} encloses reconstruction, offline selection and trigger efficiencies. Binned over the DP

Large inefficiency expected in the DP borders. Rotation to squared DP. Very large MC samples needed to compute this effect Phys.Rev. D72 (2005) 052002 ϵ^{PID} computed from dedicated D*+ \rightarrow D⁰(K⁻ π +) π + control samples, corrected by the kinematic of the decay

Mode	Down-Down	Long-Long
$B^0 \rightarrow K^0_{ m s} \pi^+ \pi^-$	689 ± 35	355 ± 21
$B^0 \rightarrow K^{ar{0}}_{ m s} K^{\pm} \pi^{\mp}$	85 ± 19	50 ± 11
$B^0 \rightarrow K^{\bar 0}_{ m s} K^+ K^-$	230 ± 17	189 ± 14
$B^0_s \rightarrow K^0_{ m s} \pi^+ \pi^-$	47 ± 18	24 ± 8
$B^0_s \rightarrow K^0_{ m s} K^{\pm} \pi^{\mp}$	265 ± 23	170 ± 16
$B^0_s \rightarrow K^0_{ m s} K^+ K^-$	13 ± 7	9 ± 4

LHCb Phys. Rev. D 85, 032008 (2012)

 $f_d/f_s = 0.267 \pm 0.021$

Systematic uncertainties

Ks,dd —►	Relative BF $ \begin{array}{c} \mathcal{B}(B^0 \to K^0_{\rm s} K^{\pm} \pi^{\mp}) / \mathcal{B}(B^0 \to K^0_{\rm s} \pi^{+} \pi^{-}) \\ \mathcal{B}(B^0 \to K^0_{\rm s} K^{+} K^{-}) / \mathcal{B}(B^0 \to K^0_{\rm s} \pi^{+} \pi^{-}) \\ \mathcal{B}(B^0_s \to K^0_{\rm s} \pi^{+} \pi^{-}) / \mathcal{B}(B^0 \to K^0_{\rm s} \pi^{+} \pi^{-}) \\ \mathcal{B}(B^0_s \to K^0_{\rm s} K^{\pm} \pi^{\mp}) / \mathcal{B}(B^0 \to K^0_{\rm s} \pi^{+} \pi^{-}) \\ \mathcal{B}(B^0_s \to K^0_{\rm s} K^{\pm} \pi^{\mp}) / \mathcal{B}(B^0 \to K^0_{\rm s} \pi^{+} \pi^{-}) \\ \mathcal{B}(B^0_s \to K^0_{\rm s} K^{\pm} \pi^{\mp}) / \mathcal{B}(B^0 \to K^0_{\rm s} \pi^{+} \pi^{-}) \\ \mathcal{B}(B^0_s \to K^0_{\rm s} K^{\pm} \pi^{\pm}) / \mathcal{B}(B^0_s \to K^0_{\rm s} \pi^{+} \pi^{-}) \\ \mathcal{B}(B^0_s \to K^0_{\rm s} K^{\pm} \pi^{\pm}) / \mathcal{B}(B^0_s \to K^0_{\rm s} \pi^{+} \pi^{-}) \\ \mathcal{B}(B^0_s \to K^0_{\rm s} K^{\pm} \pi^{\pm}) / \mathcal{B}(B^0_s \to K^0_{\rm s} \pi^{+} \pi^{-}) \\ \mathcal{B}(B^0_s \to K^0_{\rm s} K^{\pm} \pi^{\pm}) / \mathcal{B}(B^0_s \to K^0_{\rm s} \pi^{+} \pi^{-}) \\ \mathcal{B}(B^0_s \to K^0_{\rm s} K^{\pm} \pi^{\pm}) / \mathcal{B}(B^0_s \to K^0_{\rm s} \pi^{+} \pi^{-}) \\ \mathcal{B}(B^0_s \to K^0_{\rm s} K^{\pm} \pi^{\pm}) / \mathcal{B}(B^0_s \to K^0_{\rm s} \pi^{+} \pi^{-}) \\ \mathcal{B}(B^0_s \to K^0_{\rm s} K^{\pm} \pi^{\pm}) / \mathcal{B}(B^0_s \to K^0_{\rm s} \pi^{+} \pi^{-}) \\ \mathcal{B}(B^0_s \to K^0_{\rm s} K^{\pm} \pi^{\pm} \pi^{\pm}) / \mathcal{B}(B^0_s \to K^0_{\rm s} \pi^{+} \pi^{-}) \\ \mathcal{B}(B^0_s \to K^0_{\rm s} \pi^{+} \pi^{-}) / \mathcal{B}(B^0_s \to K^0_{\rm s} \pi^{+} \pi^{-}) \\ \mathcal{B}(B^0_s \to K^0_{\rm s} \pi^{+} \pi^{-}) / \mathcal{B}(B^0_s \to K^0_{\rm s} \pi^{+} \pi^{-}) \\ \mathcal{B}(B^0_s \to K^0_{\rm s} \pi^{+} \pi^{-}) / \mathcal{B}(B^0_s \to K^0_{\rm s} \pi^{+} \pi^{-}) \\ \mathcal{B}(B^0_s \to K^0_{\rm s} \pi^{+} \pi^{-}) + \mathcal{B}(B^0_s \to K^0_{\rm s} \pi^{+} \pi^{-}) \\ \mathcal{B}(B^0_s \to K^0_{\rm s} \pi^{+} \pi^{-}) + \mathcal{B}(B^0_s \to K^0_{\rm s} \pi^{+} \pi^{-}) \\ \mathcal{B}(B^0_s \to K^0_{\rm s} \pi^{+} \pi^{-}) + \mathcal{B}(B^0_s \to K^0_{\rm s} \pi^{+} \pi^{-}) \\ \mathcal{B}(B^0_s \to K^0_{\rm s} \pi^{+} \pi^{-}) + \mathcal{B}(B^0_s \to K^0_{\rm s} \pi^{+} \pi^{-}) \\ \mathcal{B}(B^0_s \to K^0_{\rm s} \pi^{+} \pi^{-}) + \mathcal{B}(B^0_s \to K^0_{\rm s} \pi^{+} \pi^{-}) \\ \mathcal{B}(B^0_s \to K^0_{\rm s} \pi^{+} \pi^{-}) + \mathcal{B}(B^0_s \to K^0_{\rm s} \pi^{+} \pi^{-}) \\ \mathcal{B}(B^0_s \to K^0_{\rm s} \pi^{+} \pi^{-}) + \mathcal{B}(B^0_s \to K^0_{\rm s} \pi^{+} \pi^{-}) \\ \mathcal{B}(B^0_s \to K^0_{\rm s} \pi^{+} \pi^{-}) + \mathcal{B}(B^0_s \to K^0_{\rm s} \pi^{+} \pi^{-}) \\ \mathcal{B}(B^0_s \to K^0_{\rm s} \pi^{+} \pi^{-}) + \mathcal{B}(B^0_s \to K^0_{\rm s} \pi^{+} \pi^{-}) \\ \mathcal{B}(B^0_s \to K^0_{\rm s} \pi^{+} \pi^{-}) + \mathcal{B}(B^0_s \to K^0_{\rm s$	Selection 5% 6% 14% 7%	Trigger 3.4% 2.5% 1.8% 1.4%	PID 2.0% 3.3% 1.1% 2.5%	Fit 11% 3% 9% 3%	f_s/f_d 9% 9% 0%	Total 13% 8% 19% 12%
	$\mathcal{B}(B^0_s \to K^0_{\rm S} K^+ K^-) / \mathcal{B}(B^0 \to K^0_{\rm S} \pi^+ \pi^-) \mid$	11%	3.0%	3.7%	22%	9%	27%
	Relative BF	Selection	Trigger	PID	Fit	f_s/f_d	Total
	$\mathcal{B}(B^0 \rightarrow K^0_{ m s} K^{\pm} \pi^{\mp}) / \mathcal{B}(B^0 \rightarrow K^0_{ m s} \pi^+ \pi^-)$	19%	1.1%	3.0%	10%	—	22%
	$\mathcal{B}(B^0 \rightarrow K^0_{ m s} K^+ K^-) / \mathcal{B}(B^0 \rightarrow K^0_{ m s} \pi^+ \pi^-)$	9%	0.5%	4.5%	4%	—	10%
NS,LL	$\mathcal{B}(B^0_s \rightarrow K^0_{\scriptscriptstyle \mathrm{S}} \pi^+ \pi^-) / \mathcal{B}(B^0 \rightarrow K^0_{\scriptscriptstyle \mathrm{S}} \pi^+ \pi^-)$	12%	1.2%	1.1%	13%	9%	20%
	$\mathcal{B}(B^0_s \to K^0_{ m s} K^{\pm} \pi^{\mp}) / \mathcal{B}(B^0 \to K^0_{ m s} \pi^+ \pi^-)$	7%	1.7%	1.6%	3%	9%	12%
	$\mathcal{B}(B^0_s \to K^0_{\mathrm{s}} K^+ K^-) / \mathcal{B}(B^0 \to K^0_{\mathrm{s}} \pi^+ \pi^-)$	18%	1.3%	4.6%	12%	9%	24%

Selection efficiency often limited by statistic uncertainty of the simulated samples. Efficiency of ~10⁻⁴. Very large MC productions needed

Fit uncertainty from fit model and fixed parameters in the fit. Use of pseudo-experiments to evaluate this contribution. Variation of signal and background models

Results

$\mathcal{B}(B^0 \to K^0 \pi^+ \pi^-) = (4.96 \pm 0.20) \times 10^{-5}$ PDG World average

$\frac{\mathcal{B}(B_s^0 \to K_s^0 K^+ K^-)}{\mathcal{B}(B^0 \to K_s^0 \pi^+ \pi^-)} = 0.084 \pm 0.031 \text{ (stat.)} \pm 0.019 \text{ (syst.)},$	Ratio of branching fractions
$\frac{\mathcal{B}(B_s^0 \to K_s^0 K^{\pm} \pi^{\mp})}{\mathcal{B}(B^0 \to K_s^0 \pi^{+} \pi^{-})} = 1.96 \pm 0.15 \text{ (stat.) } \pm 0.20 \text{ (syst.)},$	$\mathcal{B}(B_s^0 \to K^0 K^+ K^-) = (4.2 \pm 1.5 \pm 0.9 \pm 0.2) \times 10^{-6},$
$\frac{\mathcal{B}(B_s^0 \to K_s^0 \pi^+ \pi^-)}{\mathcal{B}(B^0 \to K_s^0 \pi^+ \pi^-)} = 0.24 \pm 0.06 \text{ (stat.) } \pm 0.04 \text{ (syst.)},$	$egin{array}{rllllllllllllllllllllllllllllllllllll$
$\frac{\mathcal{B}(B^0 \to K^0_{\rm s} K^+ K^-)}{\mathcal{B}(B^0 \to K^0_{\rm s} \pi^+ \pi^-)} = 0.53 \pm 0.04 \text{ (stat.)} \pm 0.04 \text{ (syst.)},$	$\mathcal{B}(B^{\circ} \to K^{\circ} K^{-} \pi^{+}) = (5.8 \pm 0.9 \pm 0.9 \pm 0.2) \times 10^{-5},$ $\mathcal{B}(B^{\circ} \to K^{\circ} K^{+} K^{-}) = (2.63 \pm 0.20 \pm 0.20 \pm 0.11) \times 10^{-5},$
$\frac{\mathcal{B}(B^0 \to K_{\rm s}^0 K^{\pm} \pi^{\mp})}{\mathcal{B}(B^0 \to K_{\rm s}^0 \pi^{+} \pi^{-})} = 0.117 \pm 0.018 \text{ (stat.)} \pm 0.018 \text{ (syst.)},$	$P(D^0 \to V^0 V^{\pm} - \Xi) = (5.9 \pm 0.0 \pm 0.0 \pm 0.0) \times 10^{-6}$

Branching fraction measurements compatible with previous measurements

- Systematic and statistical uncertainties of the same order
- $B_d \rightarrow K_S K^+\pi^-$ confirmation at 7.6 σ and $B_s \rightarrow K_S K^+\pi^-$ first observation
- Evidence for $B_s{\rightarrow}K_SK^+K^-$ and $B_s{\rightarrow}K_S\pi^+\pi^-$

Current status

- Analysis over same data sample (2011, 1/fb) has been improved. Targets to a paper before summer. <u>Clermont-Ferrand, LPNHE</u> and Warwick.
- Some of the improvements:
 - Selection and BDT optimization
 - Fit model and partially reconstructed background description
 - Global selection + PID sWeight for efficiency extraction.
 - Reduction of systematic uncertainties

Future plans

- Short term
 - Paper with branching fractions
- Medium term (2013)
 - Simplest amplitude analysis for well established decay modes: time integrated, untagged (no CPV analysis)
 - Already large amounts of information from the resonant content
 - Needs a robust Dalitz plot model

- Long term (next few years)
 - CPV in flavor specific decays
 - Untagged time dependent model
- → Very long term (>2018)
 - Tagged and time dependent analysis
 - Simpler amplitude analyses for the suppressed modes

Conclusions

- → We have presented the current status for B_(d,s)→K_shh decays at LHCb (details at LHCb-CONF-2012-023)
- First observation of the $B_s \rightarrow K_S K \pi$ decay and confirmation for $B_d \rightarrow K_S K \pi$ decay mode.
- Evidence for the existence of $B_s \rightarrow K_S \pi \pi$ and $B_s \rightarrow K_S K K$ decay modes
- Branching fraction measurements compatible with previous measurements
- There is a clear strategy, of many steps, to proceed towards CPV measurements in these decays

BACKUP SLIDES

Trigger criteria

Bandwidth and rate limited. High transverse energy (>3.5GeV), main efficiency loss for >2-body decays in hadron triggers

Significant displacement from PV and track quality. >90% efficient

Reconstruction of B (secondary) vertices using 2, 3 and 4 tracks. Standard vertex quality and impact parameter requirement. Exploits decay topology. >90% efficient

Low hadron triggers efficiency is partially compensated by selecting trigger independent of signal, fired typically by another B decay (~50%)

LHCb experiment

- Physics goals
 - Precise CPV measurements in B and D systems
 - Rare decays
 - Spectroscopy
 - QCD/EW physics

- Single-arm forward spectrometer, covers 2<η<5 pseudo-rapidity range, captures ~40% of heavy quark cross-section
- High precision vertexing, tracking and PID systems
- High trigger efficiency

For this presentation only 2011 data was used LHCb-CONF-2012-023

$B^0 \rightarrow K_S TT^+TT^-$

Decay dominated by penguin diagrams. NP from particles in the loop can introduce additional phases in the extraction of β , ie. effect in mixing induced CP asymmetries. From SM b \rightarrow qqs ~ b \rightarrow ccs, well known from B⁰ \rightarrow J/ ψ Ks

Measurement of all relative phases require a full time dependent Dalitz analysis of the decay and strong phases measurements

DCS tree level diagram, with a relative weak phase equal to γ angle. Strong relative phases and relative for each Q2B contribution might be different due to hadronic factors in the resonant content

 $B_s \rightarrow K\pi\pi$ are dominated by tree diagrams (negligible penguin contribution) yielding a theoretically cleaner γ extraction, and sensibility to $\gamma+\beta_s$

Phys.Rev. D74 (2006) 051301, Phys.Rev.D75:014002,2007

Pre selection criteria

Important to avoid large variation of selection efficiency over the Dalitz plot. Loose requirements in the momentum of the daughter tracks

Variable	Selection requirement	
$K_{\rm s}^0$ daughter track momentum	> 2 GeV/c	-
Long-Long $K_{\rm s}^0$ flight distance	$> 30 \mathrm{mm}$	
Down-Down $K_{\rm s}^0$ daughter minimum impact parameter χ^2 wrt PVs	>4	$K_S \rightarrow \pi^+\pi^-$ divided into two
Long-Long $K_{\rm s}^0$ daughter minimum impact parameter χ^2 wrt PVs	>9	categories: decaving
Long-Long $K_{\rm s}^0$ daughter track fit $\chi^2/{\rm ndof}$	< 4	incido (long long ~220/)
Down-Down Mass difference wrt nominal $K_{\rm s}^0$ mass	$< 30 \mathrm{MeV}/c^2$	inside (long-long, ~33%)
Long-Long Mass difference wrt nominal K_s^0 mass	$< 20 \mathrm{MeV}/c^2$	and outside (down-down,
χ^2 of $K^0_{ m s}$ vertex fit	< 12	~67%) the vertex locator
Down-Down χ^2 separation of K^0_s vertex and the PV	> 50	
Long-Long χ^2 separation of K^0_s vertex and the PV	> 80	
Down-Down $K_{\rm s}^0$ momentum	> 6 GeV/c	

Variable	Selection requirement
Sum of the daughters' transverse momenta	> 3000 MeV/c
$p_{\rm T}$ of at least 2 B daughters	> 800 MeV/c
Mass of the B candidate	$4779 < m_{K^0_{\rm S} h^\pm h'^\mp} < 5866{\rm MeV}/c^2$
IP wrt PV of highest $p_{\rm T} B$ daughter	> 0.05 mm
Maximum DOCA χ^2 of any 2 daughters	< 5
Transverse momentum of the B candidate	> 1500 MeV/c
χ^2 of B vertex fit	< 12
Cosine of B pointing angle	> 0.9999
Minimum B IP χ^2 wrt PVs	<4 B candidate
Minimum vertex distance wrt PVs	>1mm selection
χ^2 separation of B vertex and associated PV	> 50

Fit model

- Simultaneous unbinned extended maximum likelihood fit
 - G samples, 3 final states (K_Sππ, K_SKπ, K_SKK) times 2 for each K_S category
 - Signal: Crystal Ball functions, with common means and widths. Radiative tail parameter is shared in all samples and extracted from simulated events.
 - Misidentified events: Modeled as signal and yield constrained to the signal yield using misID efficiency.
 - Partially reconstructed decays: Threshold function convoluted with mass resolution function. From simulated events. Yield constrained fro BFs.
 - Combinatorial: Exponential function, with separate slopes for each K_S category

Vetoes, BDT and PID criteria

- Background rejection using a multivariate discriminant, BDT. Flight distances, impact parameters and B transverse momenta and direction angle
- → Vetoed the ±30MeV mass window, ~3 times the resolution, under the relevant particle hypothesis. Fully reconstructed B→2-body decays.
 - → $D^0 \rightarrow (K\pi, \pi\pi, KK), D^+ \rightarrow (K_SK, K_S\pi), D_s^+ \rightarrow (K_SK, K_S\pi), \Lambda_c \rightarrow pK_S$
 - → J/ψ→(ππ, μμ, KK), χ_{c0}→(ππ, μμ, KK)
- PID applied on top of the selection
 - Tracks decaying in flight are removed
 - Logarithm of the likelihood ratio of different particle hypothesis,
 ΔLL, mostly based in Cherenkov detector information
 - → For pions $\Delta LL(K-\pi) < 0$ and $\Delta LL(p-\pi) < 10$
 - → For kaons $\Delta LL(K-\pi)>5$ and $\Delta LL(p-K)<10$
 - ➡ Efficiency of ~85-90% and mis-ID ~5-10% for single tracks