

Measurements of gamma angle using B_(s)→DKK at LHCb

Wenbin Qian LAPP, Annecy-le-vieux IN2P3-CNRS et Université de Savoie

Outline

- > Brief introduction
- ≻ Analysis status
- > Conclusion and Prospects

CKM Angle Connected With $B_{(s)} \rightarrow Dhh$

> Similar to previous talk, additional channel to access to γ (also see introduction of γ from Alexandra)

Measured using decays access both through b→c and b→u transitions

Interference @ tree level: Test standard model

Interference *ⓐ* **loop level: Probe new physics**

Least well-known CKM constrain: sensitive to lots of channels; need to combine different measurements (@ tree level) to improve its sensitivity

> With h = h (h = K or π): can't distinguish B_(s), B_(s)-bar, D⁰ and D⁰-bar; In addition to normal amplitude interference between b→u and b→c, there are interference through oscillation; another CKM angle 2β (or Φ_s for similar triangle in B_s system) to describe oscillation effects enters game

Physics With $B \rightarrow Dhh$

> $D^0 \rightarrow K^-\pi^+$: Time dependent analysis; access $\gamma - 2\beta(\Phi_s)$; only interference via oscillation

> $D^0 \rightarrow CP$ eigenstates: time dependent analysis; access γ , $2\beta(\Phi_s)$; interference both via oscillation and $B \rightarrow D^0hh$, $B \rightarrow \overline{D}^0hh$

Dalitz Analysis With $B \rightarrow Dhh$

> Further more, Dalitz analysis could be performed to enhance its sensitivity on γ (most sensitive channel for γ measurement is the B⁻ \rightarrow DK⁻GGSZ mode with D \rightarrow Kshh)

> With even statistics, a time-dependent Dalitz could be performed

> Further details see S. Nandi and D. London, Phys. Rev. D 85, 114015 (2012), S. Ricciardi, LHCb-PUB-2010-005, M. Gronau et al., Phys. Rev. D 69, 113003 (2004): There are motivations for measuring γ where one can compare time dependent analysis of $B_s \rightarrow D_s \Phi$ to $B^- \rightarrow DK^-$ GLW mode, $B_s \rightarrow D_s KK$ to $B^- \rightarrow DK^-$ GGSZ mode ($D^0 \rightarrow K_s \pi \pi$)

Analysis Status(1)

> The analysis on $B_{(s)} \rightarrow DKK$ still at its early stage due to its low branching fraction; Only $D^0 \rightarrow K^-\pi^+$ considered at the moment

≻ First observation of $B^0 \rightarrow D^0 KK$ and first evidence of $B_s \rightarrow D^0 KK$ with $D^0 \rightarrow K^-\pi^+$ made by LHCb using 2/3 of 2011 data (0.62 fb⁻¹) (Phys. Rev. Lett. 109, 131801 (2012))

> Current analysis ongoing to update the previous branching fraction measurements and to make the first discovery of $B_s \rightarrow DKK$ with 5 times more data (1 fb⁻¹ 2011 data and 2 fb⁻¹ 2012 data)

Analysis Status(2)

> Re-optimization of selections and background study with 2011+ 2012 data finalized; update on branching fraction ongoing

> Current efforts also on performing Dalitz Analysis on $B \rightarrow D\pi\pi$ and $B \rightarrow DKK$: to understand the resonance structure and their properties; to further extend to a time-dependent Dalitz analysis if possible (for $B \rightarrow D\pi\pi$)

> As current analysis are still in progress, we describe previous analysis here, indicating improvements with prospects at the end

Selections

> The selections are all optimized using $B^0 \rightarrow D^0 \pi \pi$

➤ MVA techniques used: NeuroBayes in previous analysis, Fisher in current onging analysis after similar preselections (Linear MVA gives similar performance as nonlinear ones)

> Both signal and background (combinatorial) events for MVA inputs come from sweighted data sample of $B^0 \rightarrow D^0 \pi \pi$

➤ Inputs of MVA includes 15 variables from kinematic and geometrical properties; Reexamined in current analysis, some removed for latter Dalitz analysis or combined to improve MVA performance (10 variables used now with better MVA performance)

> Particle identification optimized after MVA and calibrated using $D^* \rightarrow D^0 \pi$

Mass(Dalitz) Distribution

 $B^0 \rightarrow D^0 \pi \pi$

> Charmless background (B \rightarrow KKK π , K $\pi\pi\pi$ etc.) not vetoed; Calculated using D⁰ mass sidebands and subtracted for branching fraction measurements

Charmless Background

> To avoid charmless contamination for Dalitz analysis, we use dedicated selection criteria to remove charmless background in ongoing analysis; we also use D^0 sidebands to monitor the selection

$$SDD = \frac{Z_{D^0} - Z_{B^0}}{\sqrt{\sigma_{z_{D^0}}^2 + \sigma_{z_{B^0}}^2}}$$

z position of B(D) vertex
z error of B(D) vertex

Mis-ID Background

➤ The mis-ID background from D⁰ daughters is removed by restricting D mass window

> The mis-ID background from B^0 daughters still remains and may cause peaking structures around B^0 mass

➤ We obtain the shape of these background directly from Monte Carlo simulations; The number of these backgrounds (in full fit range) are obtained by fitting them together with other contributions

Branching Fraction Measurements Phys. Rev. Lett. 109, 131801 (2012)

> Branching fraction of $B^0 \rightarrow DKK$ measured w. r. t. $B^0 \rightarrow D\pi\pi$

$$\frac{\mathcal{B}\left(B^{0}\to\bar{D}^{0}K^{+}K^{-}\right)}{\mathcal{B}\left(B^{0}\to\bar{D}^{0}\pi^{+}\pi^{-}\right)} = \frac{N^{\operatorname{corr}}\left(DKK\right)\left(1-\frac{N^{\operatorname{peak}}\left(DKK\right)}{N\left(DKK\right)}\right)}{N^{\operatorname{corr}}\left(D\pi\pi\right)\left(1-\frac{N^{\operatorname{peak}}\left(D\pi\pi\right)}{N\left(D\pi\pi\right)}\right)}$$
Charmless background

Efficiency corrected Yields

- > Per-event efficiency over Dalitz plot obtained from Monte Carlo
- > Branching fraction of $B_s \rightarrow DKK$ measured w. r. t. $B^0 \rightarrow DKK$

$$\frac{\mathcal{B}\left(B_{s}^{0}\to\bar{D}^{0}K^{+}K^{-}\right)}{\mathcal{B}\left(B^{0}\to\bar{D}^{0}K^{+}K^{-}\right)} = \left(\frac{f_{s}}{f_{d}}\right)^{-1} \frac{N(B_{s}^{0}\to DKK)}{N(B^{0}\to DKK) - N^{\mathrm{peak}}(B^{0}\to DKK)}$$

> Measured Branching fractions:

$$\frac{\mathcal{B}(B^{0} \to \overline{D}^{0}K^{+}K^{-})}{\mathcal{B}(B^{0} \to \overline{D}^{0}\pi^{+}\pi^{-})} = 0.056 \pm 0.011 \pm 0.007, \qquad 5.8\sigma \text{ observation} \\ \frac{\mathcal{B}(B^{0} \to \overline{D}^{0}K^{+}K^{-})}{\mathcal{B}(B^{0} \to \overline{D}^{0}K^{+}K^{-})} = 0.90 \pm 0.27 \pm 0.20. \qquad 3.8\sigma \text{ evidence}$$

Conclusion and Prospects

> $B_{(s)} \rightarrow DKK(\pi\pi)$: (another) sensitive channels for CKM angle γ (β , Φ_s) measurements

> LHCb made first observation of $B^0 \rightarrow D^0 KK$ and first evidence of $B_s \rightarrow D^0 KK$ with $D^0 \rightarrow K^- \pi^+$

> Current analysis ongoing to improve the measured branching fraction and to make the first discovery of $B_s \rightarrow DKK$ with full dataset

> We can expect around 30000 B⁰ \rightarrow D⁰ $\pi\pi$, 2500 B⁰ \rightarrow D⁰KK and 600 B⁰_s \rightarrow D⁰KK signal events with 3 fb⁻¹

> Dalitz analysis is ongoing for $B^0 \rightarrow D^0 KK(\pi\pi)$