

Measuring the CKM γ angle with $B^0 \rightarrow DK^{*0}$ decay at LHCb

Alexandra MARTÍN SÁNCHEZ (LAL, Orsay)

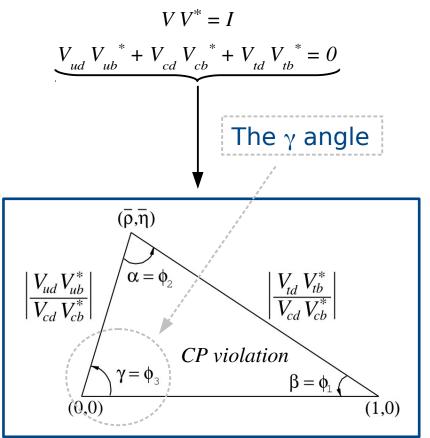
03.04.2013 LHC France Annecy

The γ angle of the CKM theory

Quark mixing:

mass eigenstates ≠ interaction eigenstates

 \rightarrow Cabibbo-Kobayashi-Maskawa matrix (CKM)

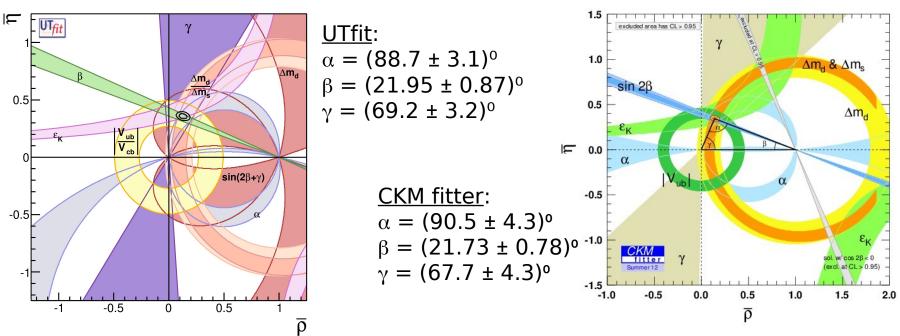

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix}$$

CKM matrix

 3 x 3 matrix → can be parametrised by three real parameters and a complex phase
 Usually: Wolfenstein parametrisation

$$V = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

□ Rotation matrix \rightarrow unitarity


CKM Unitary Triangle

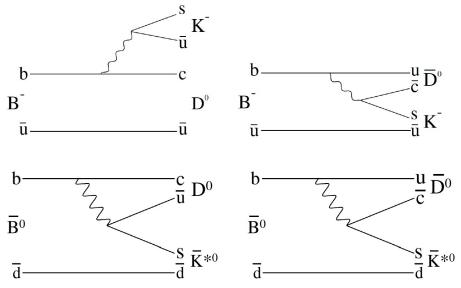
State of the art

- Unitary Triangle well constrained from *B* factories, Tevatron and LHC results.
- Global fits combine all results in order to determine the different CKM parameters.
 - \Box γ is the one known with the largest uncertainty.

$$\begin{split} \gamma^{\text{BaBar}} &= (69 \pm 17)^{\text{o}} \\ \gamma^{\text{Belle}} &= (68 \pm 15)^{\text{o}} \\ \gamma^{\text{LHCb}} &= (71.1 \pm 16.7)^{\text{o}} \end{split}$$

Large uncertainties in the γ direct measurements compared with the global fits. Need to measure γ precisely to check the Unitary Triangle consistency.

4



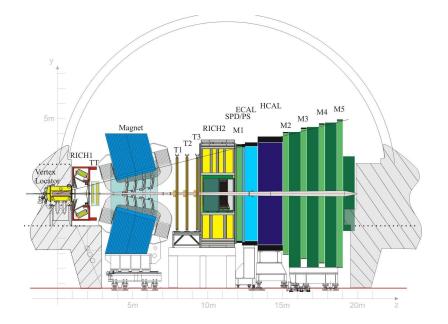
Measuring $\boldsymbol{\gamma}$ at the tree level

From the Unitary Triangle:

$$\gamma = rg\left(-rac{V_{ud}V^*_{ub}}{V_{cd}V^*_{cb}}
ight)$$

- □ With tree diagrams, γ is measured from decays involving the interference of a $b \rightarrow u$ (V_{ub}) transition and a $b \rightarrow c$ (V_{bc}) transition.
 - No physics beyond the Standard Model contributions (no loops).
 - ¹ Typically decays of the type $B^{\pm,0} \rightarrow DK^{\pm,*0}$.

- When the same final state is accessible for both D⁰ and D
 ⁰, the interference can be studied.
 - Access to γ from the measurement of *CP* observables (asymmetries between $B^{0,+}$ and $\overline{B}^{0,-}$ signal yields).



$B \rightarrow DK$ decays at LHCb

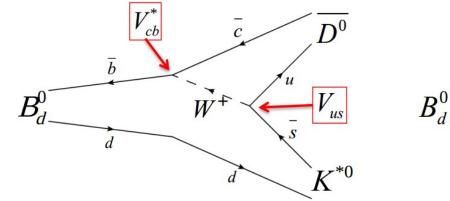
5

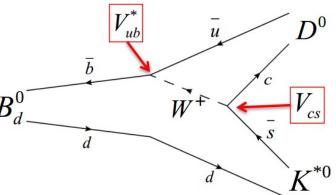
- LHCb detector well suited for the study of heavy flavoured hadronic decays, thanks to:
 - Geometry, $2 < \eta < 5$.
 - Vertex locator:
 - Precise reconstruction of primary and secondary vertices (resolution = 45 fs for $B_s \rightarrow J/\psi \varphi$ and for $B_s \rightarrow D_s \pi$).
 - RICHs particle identification detectors:
 - Excellent $K \pi$ separation (K identification efficiency = 95 % with 5 % of π misidentification).
 - LHC collision energy:
 - All type of *B* hadrons produced (*B*[±], *B*⁰, *B*⁰, *b*-baryons, *B*[±]).
 - Big boost, long-lived particles fly over long distances.
 - Easy secondary vertex separation.
 - Hadronic trigger (HCAL+ECAL):
- Able to select *B* decays to open charm purely hadronic final states.
 03.04.2013

More information in S. T'jampens talk of yesterday

6

$B^0 \rightarrow D K^{*0}$ analysis at LHCb





$B^0 \rightarrow D K^{*0}$ introduction

7

Sensitivity to the CKM weak phase γ:

- Both decays are colour suppressed \rightarrow larger ratio of amplitudes between the two diagrams, enhanced interference (compared to $B^{\pm} \rightarrow DK^{\pm}$, which is the "usual" mode for measuring γ).
- Small branching fractions.
- [□] $K^{*0} \to K^+ \pi^- \to \text{self-tagged decay}$, the flavour of the *B* known from the sign of the *K* from the *K*^{*0} in the final state.
- Different methods to extract γ depending on the *D* decay mode:
 - GLW (Gronau, London, Wyler): $D \rightarrow K^+ K^-$ (*CP* eigenstates).
 - ADS (Atwood, Dunietz, Soni): suppressed $D \rightarrow K^{-} \pi^{+}$ (flavour specific final state).
 - GGSZ (Giri, Grossman, Soffer, Zupan): $D \rightarrow$ multi-body decay.

03.04.2013

$\square B^0 \to D K^{*0}, D \to K^+ K^- \text{ (signal channel), } D \to K^+ \pi^- \text{ (favoured, normalisation channel)}$

- **GLW** analysis, sensitive to the γ angle.
- Cut-based analysis using 1 fb⁻¹ of 2011 data.
- Measurement of *CP* asymmetries and ratios built from the partial widths of $B^0 \rightarrow D K^{*0}$, and its conjugate $\overline{B}^0 \rightarrow D \overline{K}^{*0}$ decay.
 - **Over which depend on** γ .
 - Together with
 - the ratios of amplitudes $r_{B0,D}$,
 - strong phases $\delta_{B0,D}$ and the
 - K^{*0} coherence factor κ .

$$\begin{split} \mathcal{A}_{d}^{KK} &= \frac{\Gamma(\overline{B}^{0} \to [K^{+}K^{-}]_{D}\overline{K}^{*0}) - \Gamma(B^{0} \to [K^{+}K^{-}]_{D}K^{*0})}{\Gamma(\overline{B}^{0} \to [K^{+}K^{-}]_{D}\overline{K}^{*0}) + \Gamma(B^{0} \to [K^{+}K^{-}]_{D}K^{*0})} \\ &= \frac{\pm 2\kappa r_{B^{0}} \sin \delta_{B^{0}} \sin \gamma}{1 + r_{B^{0}}^{2} \pm 2\kappa r_{B^{0}} \cos \delta_{B^{0}} \cos \gamma}, \\ \mathcal{R}_{d}^{KK} &= \frac{\Gamma(\overline{B}^{0} \to [K^{+}K^{-}]_{D}\overline{K}^{*0}) + \Gamma(B^{0} \to [K^{+}K^{-}]_{D}K^{*0})}{\Gamma(\overline{B}^{0} \to [K^{-}\pi^{+}]_{D}\overline{K}^{*0}) + \Gamma(B^{0} \to [K^{+}\pi^{-}]_{D}K^{*0})} \\ &= \frac{1 + r_{B^{0}} \pm 2\kappa r_{B^{0}} \cos \delta_{B^{0}} \cos \gamma}{1 + r_{B^{0}}^{2} r_{D}^{2} \pm 2\kappa r_{B^{0}} r_{D} \cos (\delta_{B^{0}} + \delta_{D}) \cos \gamma} \\ \mathcal{A}_{s}^{KK} &= \frac{\Gamma(B_{s}^{0} \to [K^{+}K^{-}]_{D}\overline{K}^{*0}) - \Gamma(\overline{B}_{s}^{0} \to [K^{+}K^{-}]_{D}K^{*0})}{\Gamma(B_{s}^{0} \to [K^{+}K^{-}]_{D}\overline{K}^{*0}) + \Gamma(\overline{B}_{s}^{0} \to [K^{+}K^{-}]_{D}K^{*0})}, \\ \mathcal{A}^{\text{fav}} &= \frac{\Gamma(\overline{B}^{0} \to [K^{-}\pi^{+}]_{D}\overline{K}^{*0}) - \Gamma(B^{0} \to [K^{+}\pi^{-}]_{D}K^{*0})}{\Gamma(\overline{B}^{0} \to [K^{-}\pi^{+}]_{D}\overline{K}^{*0}) + \Gamma(B^{0} \to [K^{+}\pi^{-}]_{D}K^{*0})}. \end{split}$$

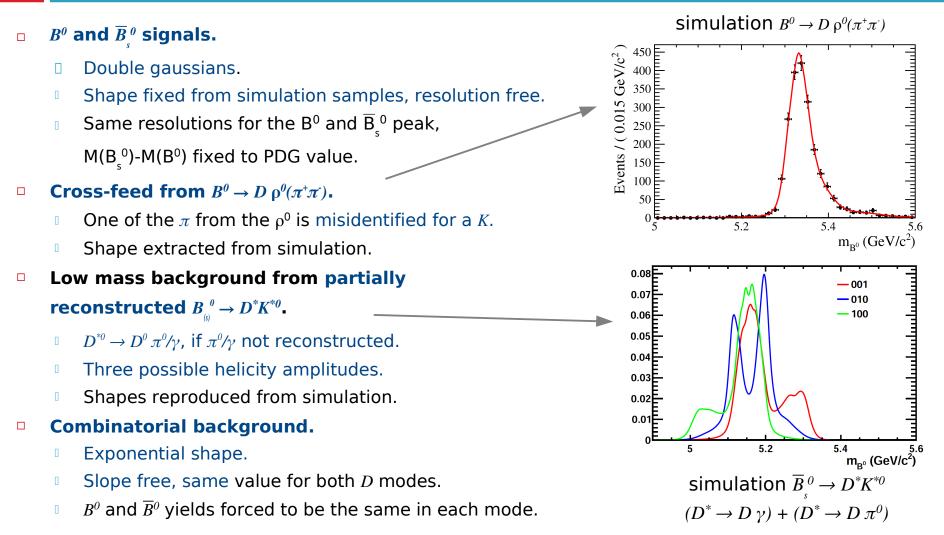
Alexandra MARTÍN SÁNCHEZ – LAL, Orsay

Selection

Meson	Variable	Cut value
D^0	$p_{\mathrm{T}}(K^{\pm},\pi^{\pm})$	$> 400 \mathrm{MeV}/c$
	$\mathrm{DLL}_{K\pi}(K^{\pm})$	> 0
	$\mathrm{DLL}_{K\pi}(\pi^{\pm})$	< 4
	Vertex χ^2/ndf	< 5
	Min $IP\chi^2$	> 4
	Flight distance significance	> 2.5
	$ M(K\pi) - M(D^0) $	$< 20 \mathrm{MeV}/c^2$
K^{*0}	$p_{\mathrm{T}}(K^{\pm},\pi^{\pm})$	$> 300 \mathrm{MeV}/c$
	$\mathrm{DLL}_{K\pi}(K^{\pm})$	> 3
	$\mathrm{DLL}_{K\pi}(\pi^{\pm})$	< 3
	$\mathrm{DLL}_{pK}(K^{\pm})$	< 10
	Min $IP\chi^2$	> 25
	$ M(K\pi) - M(K^{*0}) $	$< 50 \mathrm{MeV}/c^2$
В	Vertex χ^2/ndf	< 4
	Min $IP\chi^2$	< 9
	$\cos(\theta_{\rm dira})$	> 0.99995
	$\sum_{\text{tracks}} \sqrt{\text{IP}\chi^2}$	> 32
	$ \cos \theta^* $	> 0.4
	$ M(K\pi\pi) - M(D^+) $	$> 15 \mathrm{MeV}/c^2$
	$ M(KK\pi) - M(D_s^+) $	$> 15 \mathrm{MeV}/c^2$

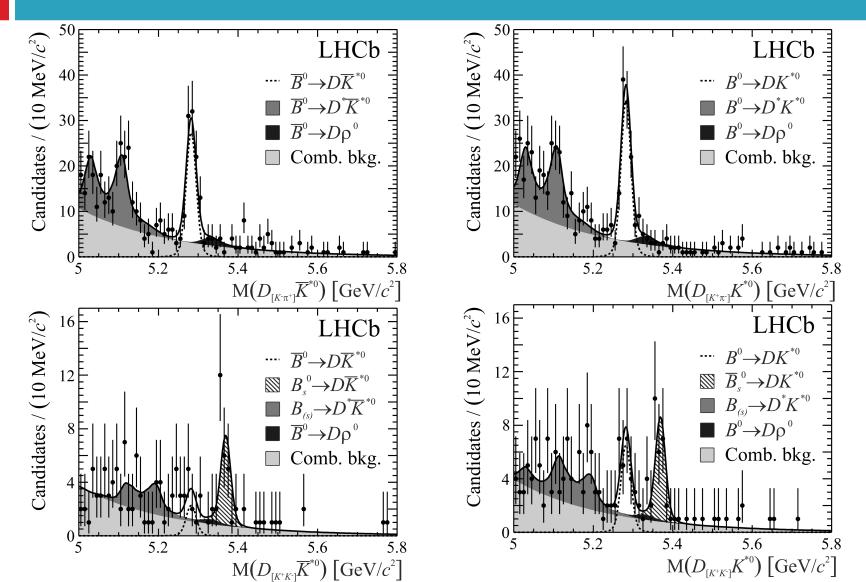
Topology:

B vertex.

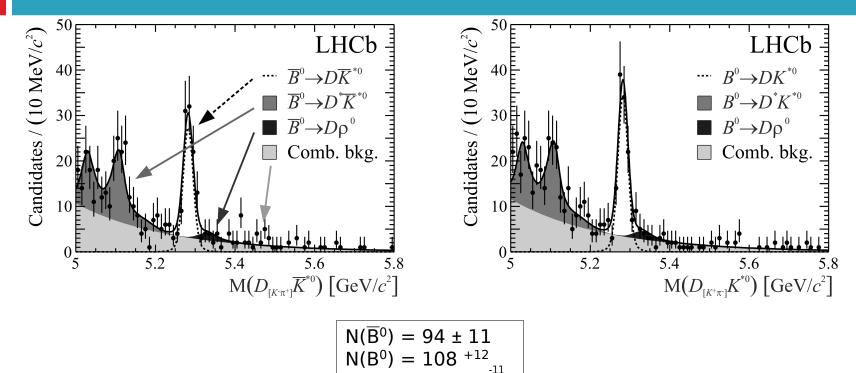

- Displaced *D* vertex.
- K and π from K^{*0} coming from the *B* vertex (wide resonance).
- Cut-based selection: kinematics, vertex quality, particle identification (DLL_{κ,π}).
- Background from charmless decays (such as $B^0 \rightarrow K^+ K^- K^{*0}$, etc.) removed by *D* meson flight distance significance cut.
- □ $B^0 \rightarrow D_{(s)}^{+/-} h^{-/+}$ (same particles in the final state) and $\Lambda_b^0 \rightarrow \overline{D}^0 p h^-$ (proton mis-id) contributions vetoed $(h = K, \pi)$.

Mass fit philosophy

10

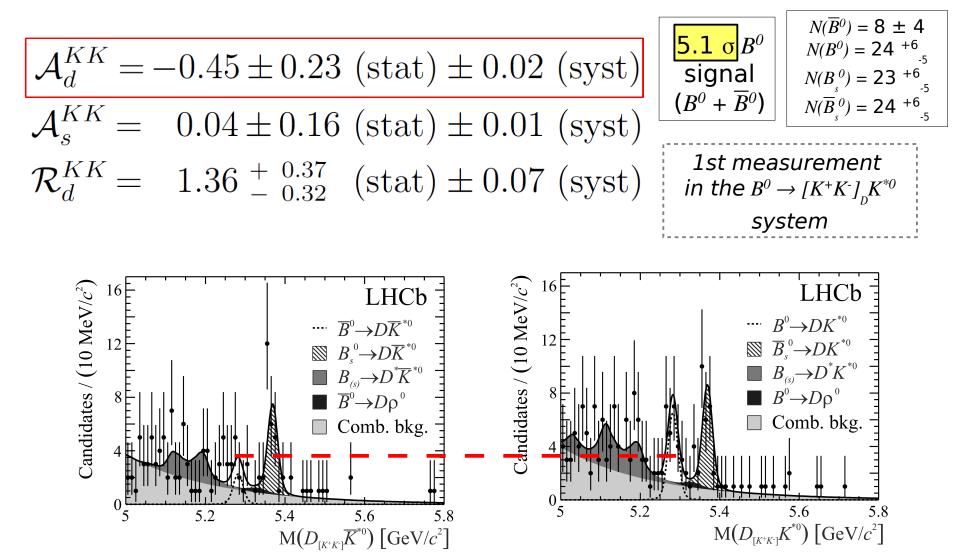


03.04.2013



Results

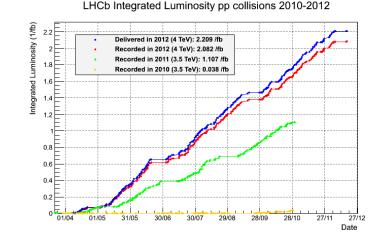
$\begin{array}{c} \overset{}{\overset{}}{\overset{}} B^{0} \rightarrow D \ K^{*0}, \ D^{0} \rightarrow K^{+} \ \pi^{-} \\ \text{(normalisation mode)} \end{array}$


Favoured, control mode No *CP* asymmetry expected

 $\mathcal{A}_d^{\text{fav}} = -0.08 \pm 0.08 \text{ (stat)} \pm 0.01 \text{ (syst)}$

03.04.2013

LHCD THCD $B^0 \to D K^{*0}, D^0 \to K^+ K^-$ (signal mode)



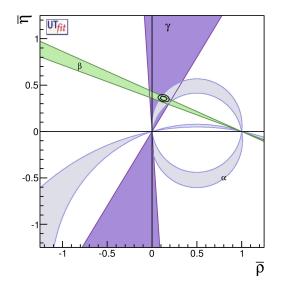
14

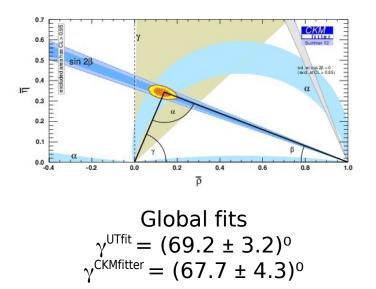
- LHCb well suited for the study of heavy flavoured hadronic decays.
- Measuring γ precisely is one of the main goals of its physics program.
- Result published on the *CP* asymmetries of the $B^0 \to D K^{*0}$ decay mode: LHCb collaboration, R. Aaij et al., *Measurement of CP observables in* $B^0 \to D K^{*0}$ with $D \to K^+ K^-$, JHEP **1303** (2013) 067, arXiv:1212.5205.
- Total dataset is 3 fb⁻¹.
 - 2 fb⁻¹ of data collected by LHCb in 2012.
 - Plans:
 - Update this analysis with the complete data set.
 - Add new modes sensitive to γ.
 - GLW $D \to \pi^+ \pi^-$.
 - ADS suppressed $D \to K^{-}\pi^{+}$.

□ $B^0 \rightarrow D K^{*0}$ does not bring constraints to γ yet, but with the new LHCb data it becomes a promising channel.

03.04.2013

15 Back up

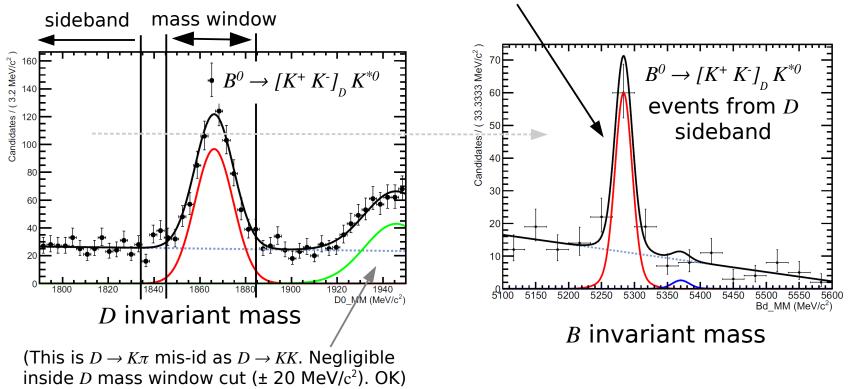

03.04.2013



The $\boldsymbol{\gamma}$ angle status

16

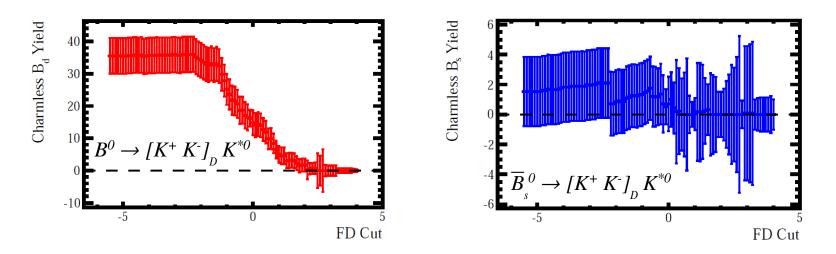
- Focusing on the angles:
 - γ is the one known with the largest uncertainty.


$$\begin{split} \gamma^{\text{BaBar}} &= (69 \pm 17)^{\text{o}} \\ \gamma^{\text{Belle}} &= (68 \pm 15)^{\text{o}} \\ \gamma^{\text{LHCb}} &= (71.1 \pm 16.7)^{\text{o}} \end{split}$$

Large uncertainties in the direct measurements compared with the global fits. Need to measure γ precisely to check the Unitary Triangle consistency.

Charmless background: a closer look

- From $B^0 \rightarrow K^+ K^- K^{*0}(K^+ \pi^-)$ decays.
- The case when the four final state particles come from the *B* vertex.
 - Instead of having a *D* displaced vertex.
- Estimate it from the *D* mass distributions sidebands.
 - Look for peaks at the *B* invariant mass coming from these events.

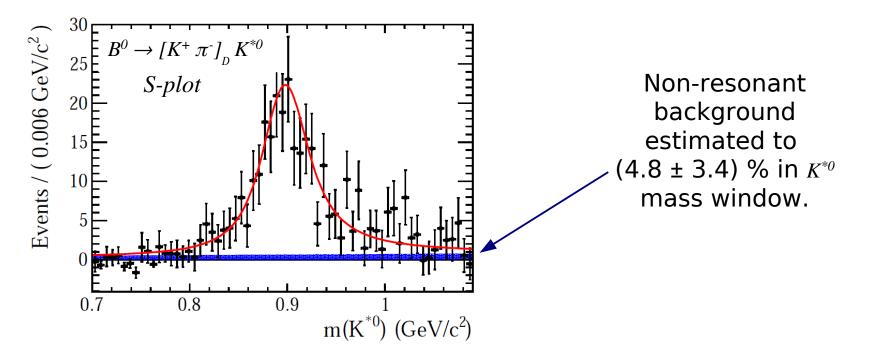


Charmless background: a closer look

18

- Look for a D displaced vertex:
 - Apply a cut on the flight distance significance of the *D* meson.
 - And compute the number of events left from the D sidebands in the B mass distribution.

 $D_{FDsig} =$


• A cut of $D_{FDsig} > 2.5$ removes this background.

Non-resonant K^{*0} background

- From $B^0 \rightarrow D K^+ \pi^-$ decays.
- Important to control for the γ extraction from this mode.
- Addressed by computing the background substracted distribution (s-Plot) of the K^{*0} invariant mass.
 - Signal in this plot is resonant, background is non-resonant.

Systematics

Source	\mathcal{A}_{d}^{KK}	$\mathcal{A}_d^{ ext{fav}}$	\mathcal{A}_{s}^{KK}	\mathcal{R}_{d}^{KK}
Production asymmetry	0.005	0.006	_	0.003
PID efficiency	0.004	0.008	0.005	0.014
Trigger efficiency	0.004	0.001	0.005	0.022
Selection efficiency	_	_	_	0.040
Bias correction	0.004	_	0.001	0.013
Low-mass background	0.017	0.001	0.004	0.042
$B^0 \to D \rho^0$ cross-feed	0.001	_	0.002	0.008
Signal description	0.001	0.001	0.001	0.005
D branching fractions	—	_	_	0.022
Total	0.019	0.010	0.008	0.069