

Production of W,Z bosons in association with photons at the LHC

Henso Abreu (IRFU-SPP, CEA-Saclay)

s a c l a y

03 April 2013 . LHC France 2013. Imperial Palace, Annecy.

Wednesday, April 3, 13

- Motivation.
- Production Cross-Section Measurements
 - Event Selections
 - Data-Driven Methods
 - Photon criteria efficiency
 - Differential cross-section results.
- Search for Anomalous Triple Gauge Couplings in WY and ZY $% \mathcal{T}_{\mathcal{T}}$
- Summary

EW bosons + direct photons:

signal photon is composed of "direct (of hard scatter)" and fragmentation.

fragmentation production component:

- Physics interest :
 - test of perturbative QCD
 - Highest cross sections among all diboson processes.
 - probing the WWY TGC
 - probing the existence of ZZY and ZYY (forbidden at tree level in the Standard Model)
 - main background in $W\gamma/Z\gamma$ resonance searches (Higgs, LSTC)

EW bosons + direct photons:

• signal photon is composed of "direct (of hard scatter)" and fragmentation.

fragmentation production component:

- Background for this analyses :
 - **W** γ : W+jets, γ +jets, Z+jets, ttbar, Single top and Dibosons.
 - **ZY** : **Z**+jets, ttbar and Dibosons.
 - Background are estimated by using Data-driven techniques

Cross section measurements ingredients:

The measurement of the cross section is given canonically by the formula:

$$\sigma = \frac{N_{\text{sig}}}{A_{\ell\nu\gamma(\ell\ell\gamma)}\cdot\epsilon\cdot\mathcal{L}}$$

- N_{sig} : is the number of observed signal events
- A : is the geometric and kinematic acceptance
- ε : is the selection efficiency for events in the acceptance
- \mathcal{L} : is the integrated luminosity (~5 fb⁻¹ with 7 TeV data)

Event selections:

• High p_T Jets are selected

Background Estimations:

After to have selected the Z(W) boson, background are computed respect to the photon signal candidate (in both experiments, *ATLAS* and *CMS*).

<u>*CMS*</u>:

Wy analysis

 $\sigma_{i\eta i\eta}$

- The signal shape from MC validated with data.
- The background template were made from jet-enriched data. (as a function of the track isolation energy)

Background Estimations:

After to have selected the Z(W) boson, background are computed respect to the photon signal candidate.

Data/MC comparison plots:

photon E_T **distributions:**

MET distributions:

- Good Data/MC agreement in photon E_T distributions.
- Also nice agreement, in other key variables. For example, M_{IIY} and M_T .

Photon criteria efficiency:

CMS: CMS Preliminary, L = 5 fb⁻¹ √s = 7 TeV CMS Preliminary, $L = 5 \text{ fb}^{-1}$ √s = 7 TeV Efficiency Ratio of efficiencie • Exploit the similarity between 1.15 0.95 photons and electrons. 1.1 0.9 1.05 - Use tag-and-probe 0.85 technique with Z(ee) MC 0.95 0.8 γ+jet MC Data Tag and Probe Electron / Photon MC 0.9 $Z \rightarrow ee events.$ Z(ee) Data / MC MC Tag and Probe 0.75 0.85 0.7 20 30 40 50 60 70 80 90 30 40 50 60 70 80 90 100

40 50 60 70 80 90 100

E^γ_T (GeV)

ATLAS:

- Using signal MC samples. Shower shape distributions are corrected to account small discrepancies between data and simulation.

- bigger than ~50% at E_T [15-20] GeV and around 90% at E_T [40-60] GeV

- Systematics are the difference between corrected nominal and efficiency from pure photon sample from radiative Z decays in data.

E^γ_τ (GeV)

Production cross section measurements:

- Inclusive cross sections above the theory (MCFM NLO) $W\gamma$
- Fair agreement for $Z\gamma$
- Cross sections are compatibles between the two experiments at high E_T photon . (Equivalent selection and bin size)

Production cross section measurements:

CMS:

photons with transverse energy of 145 GeV with in the pseudorapidity $|\eta| < 1.4$

21.3 ± 4.2 (stat.) ± 4.3 (syst.) ± 0.5 (lumi.) fb

theoretical prediction from **BAUR** : 21.9 ± 1.1 fb

ATLAS: photons with transverse energy of 90 GeV

0.133 ± 0.013 (stat.) ± 0.020 (syst.) ± 0.005 (lumi.) pb theoretical prediction from **MCFM** : 0.156 ± 0.012 pb

Systematics in cross section measurements: *ATLAS:*

- Photon identification uncertainty is found around **6%** for all Vg measurements.

- Isolation efficiency is found to be less than 3%.
- ABCD method less than **9%**.
- Jet energy scale and Jet energy resolution:
 - Exclusive Ivy smaller than 4%.
 - Exclusive IIY and VVY smaller than 3%.

<u>CMS:</u>

- Muon p_T scale, Electron and Photon energy scale $\sim 3\%$ in the signal yield for all Vg measurements.

- Acceptance and efficiencies \sim **5.5%** and \sim **1.4%** for WY and ZY, respectively.

- Template method $\sim 8\%$ and $\sim 5\%$ for Wy and Zy, respectively.

Anomalous Triple Gauge Couplings (aTGC):

•The triple gauge couplings (through ZZY and ZYY vertex) in ZY process vanish in the SM.

- Contributions form anomalous couplings will increase the $Z\gamma$ x-secs. and yield photons of higher energy than in the SM process.

•By assuming CP conservation, $h_3^{Z/\gamma}$ and $h_4^{Z/\gamma}$ are chosen as aTGC parameters.

Triple Gauge Couplings (TGC):

•The triple gauge couplings (through WWY vertex) in WY process vanish in the SM.

- Contributions form anomalous couplings will increase the WY x-secs. and yield photons of higher energy than in the SM process.

$$\frac{\mathcal{L}_{WWV}}{g_{WWV}} = ig_1^V (W^{\dagger}_{\mu\nu} W^{\mu} V^{\nu} - W^{\dagger}_{\mu} V_{\nu} W^{\mu\nu})$$
$$+ i\kappa_V W^{\dagger}_{\mu} W_{\nu} V^{\mu\nu} + \frac{i\lambda_V}{M_W^2} W^{\dagger}_{\delta\mu} W^{\mu}_{\nu} V^{\nu\delta},$$

• Assuming C and P conservation only two independent parameters remain $\Delta \kappa_{\gamma} = \kappa_{\gamma}$ -land λ_{γ} .

Limits on Anomalous Couplings :

 The limits on a given aTGC parameter are extracted from a Frequentist Profile Likelihood test

• Measurements performed in the last exclusive E_T photon bin [100GeV - 1TeV]. Better sensibility.

•No deviations from SM predictions observed.

Limits on Anomalous Couplings :

- •No deviations from SM predictions observed.
- •Limits are comparable to LEP and Tevatron results, with different form factors.
- •ATLAS and CMS results are compatibles.

Summary:

• Production cross section measurements performed for $W(\nu e, \nu \mu)\gamma$ and $Z(e e, \mu \mu, \nu \nu)\gamma$ using ~5fb⁻¹ of collected data with the ATLAS and CMS detector.

• Differential cross sections agree with Standard Model predictions from multi leg MC generators.

• Exclusive measurements in WY and ZY are used to constraint aTGCs. No deviations from SM predictions observed.

• Compatible measurements in both collaborations.

Event selections (ATLAS):

Wednesday, April 3, 13

ATGC CMS Zg:

21

ATGC ATLAS Wg:

