Searches for the SM BEH boson decaying into a pair of *b* quarks at the LHC

Nancy Tannoury (<u>tannoury@cppm.in2p3.fr</u>) LHC France – Annecy – April 2013

$H \rightarrow bb$: introduction

- ▶ 2012 → ATLAS & CMS: Observation of a new BEH-like particle with a mass around 125 GeV decaying into a pair of bosons:
 - High resolution channels: $H \rightarrow ZZ$, $H \rightarrow WW$ and $H \rightarrow \gamma \gamma$
- Test the compatibility with the SM BEH boson:
 - Look at fermionic decays:
 - **Largest BR for a** *bb* **decay:**
 - ▶ BR(*H*→*b*⁻*b*) =(57.7±1.9)%
 - ▶ BR(*H*→τ+τ-) =(6.3±0.4)%
 - ► BR(*H*→*c* c) = (2.9±0.4)%
 - ▶ BR(*H*→μ+μ−) = (0.022±0.001)%

$H \rightarrow bb$: introduction

- ► 2012 → ATLAS & CMS: Observation of a new BEH-like particle with a mass around 125 GeV decaying into a pair of bosons:
 - ► High resolution channels: $H \rightarrow ZZ$, $H \rightarrow WW$ and $H \rightarrow \gamma \gamma$
- Test the compatibility with the SM BEH boson:
 - Look at fermionic decays:
 - Largest BR for a *bb* decay:
 - ► BR(*H*→*b*⁻*b*) =(57.7±1.9)%
 - ▶ BR(*H*→τ+τ-) =(6.3±0.4)%
 - BR(*H*→c̄c) = (2.9±0.4)%
 - ▶ BR(*H*→μ+μ−) = (0.022±0.001)%
 - HUGE background coming essentially from the high p_T
 b-jet production, and the multi-jets production

Challenge: improve the analyses strategies to get the best discrimination between signal & BG

ATLAS and CMS searches for the $H \rightarrow bb$

ATLAS and CMS searches for the $H \rightarrow bb$

$VH \rightarrow Vbb$: channels

b-jet identification : Key ingredient

$VH \rightarrow Vbb$: Background treatment

- Main bkg processes:
 - W+jets, Z+jets, tt, single top
 - **ATLAS+CMS:** shape from simulation and normalization from data
 - ATLAS & CMS: normalization from data/MC scale factors from data control regions
 - ATLAS: multi-jets bkg estimated from data driven method

VH→Vbb: Signal extraction

- Shape analysis discriminator:
 - ATLAS: profile likelihood fit based on M_{bb}
 - CMS: signal and bkg fit to the shape of the BDT output
- Improve the sensitivity of the analysis:
 - Split the analysis into separate regions:
 - ATLAS : 0-leptons events → six categories in jet multiplicity (2 or 3 jets) and in missing E_T, 1 or 2 leptons: 5 categories in the p_T of the vector boson
 - <u>CMS</u>: split each channel into low or high p_T^{ν} , looser b-tagging requirement in the high p_T^{ν}

Nancy Tannoury

VH→Vbb: Systematic Uncertainties

Uncertainty [%]	0 lepton	1 lepton	2 leptons			
<i>b</i> -tagging	6.5	6.0	6.9			
<i>c</i> -tagging	7.3	6.4	3.6			
light tagging	2.1	2.2	2.8			
Jet/Pile-up/ $E_{\rm T}^{\rm miss}$	20	7.0	5.4			
Lepton	0.0	2.1	1.8			
Top modelling	2.7	4.1	0.5			
W modelling	1.8	5.4	0.0			
Z modelling	2.8	0.1	4.7			
Diboson	0.8	0.3	0.5			
Multijet	0.6	2.6	0.0			
Luminosity	3.6	3.6	3.6			
Statistical	8.3	3.6	6.6			
Total	25	15	14			

ATI

Uncertainty [%]	0 lepton		1 lepton	2 leptons	
	ZH	WH	WH	ZH	
<i>b</i> -tagging	8.9	9.0	8.8	8.6	
Jet/Pile-up/ $E_{\rm T}^{\rm miss}$	19	25	6.7	4.2	
Lepton	0.0	0.0	2.1	1.8	
$H \rightarrow bb \text{ BR}$	3.3	3.3	3.3	3.3	
$VH p_T$ -dependence	5.3	8.1	7.6	5.0	
VH theory PDF	3.5	3.5	3.5	3.5	
VH theory scale	1.6	0.4	0.4	1.6	
Statistical	4.9	18	4.1	2.6	
Luminosity	3.6	3.6	3.6	3.6	
Total	24	34	16	13	

CMS

Source	Range
Luminosity	2.2-4.4%
Lepton efficiency and trigger (per lepton)	3%
$Z(\nu\nu)H$ triggers	3%
Jet energy scale	2–3%
Jet energy resolution	3-6%
Missing transverse energy	3%
b-tagging	3–15%
Signal cross section (scale and PDF)	4%
Signal cross section (p_T boost, EWK/QCD)	5–10% / 10%
Signal Monte Carlo statistics	1-5%
Backgrounds (data estimate)	pprox 10%
Single-top (simulation estimate)	15-30%
Dibosons (simulation estimate)	30%

CMS & ATLAS main sources of systematics:

- b-tagging (ATLAS,CMS)
- JES (ATLAS)
- Signal cross section uncertainty (CMS & ATLAS)

VH→Vbb: Results

Nancy Tannoury

VH \rightarrow Vbb: M_{bb} distribution cross check

M_{bb} distributions after subtracting all the background except the di-boson process and the SM Higgs from WH and ZH associated production

$VH \rightarrow Vbb$ and $ttH \rightarrow ttbb$

ATLAS and CMS searches for the $H \rightarrow bb$:

Nancy Tannoury

ttH→ttbb : Introduction

Directly probe top-Higgs Yukawa coupling

- The largest coupling
- Help understanding the EWSB
- Direct measurement via tt+H
- l top→Wb
- 3 decay channels depending on the W decay
 - Lepton+jets (CMS & ATLAS)
 - $ttH \rightarrow Wb Wb bb \rightarrow lvb jjb bb$
 - Di-lepton channel (CMS)
 - $ttH \rightarrow Wb Wb bb \rightarrow lvb lvb bb$
 - All hadronic channel: (ongoing)
 - ▶ ttH→Wb Wb bb→jjb jjb bb

Busy channels, large combinatorial background, huge *tt* background

ttH→ttbb: Analysis Strategy

ttH→ttbb: Systematic uncertainties

15/	Source	Rate Uncertainty	
$\mathbf{}$	Luminosity (7 TeV)	2.2%	
	Luminosity (8 TeV)	4.4%	
	Lepton ID/Trig	4%	
	Pileup	1%	
	Additional Pileup Corr.	_	
	Jet Energy Resolution	1.5%	
ſ	Jet Energy Scale	0-60%	
	b-Tag SF (b/c)	0-33.6%	
	b-Tag SF (mistag)	0-23.5%	
	MC Statistics	-	
	PDF (gg)	9%	
	$PDF(q\overline{q})$	4.2-7%	
	PDF (qg)	4.6%	
	QCD Scale (ttH)	15%	
	QCD Scale (tt)	2-12%	
	QCD Scale (V)	1.2-1.3%	
_	QCD Scale (VV)	3.5%	
	Madgraph Scale (tt)	0-20%	
	Madgraph Scale (V)	20-60%	
	$t\bar{t} + b\bar{b}$	50%	

- Biggest experimental systematics for ATLAS & CMS:
 - JES
 - b-tagging

)		tīH(125)	tī
	Luminosity	+1.8/-1.8	+1.8/-1.8
	Lepton ID+reco+trigger	+1.3/-1.3	+1.3/-1.3
	let vertex fraction efficiency	+2.4/-1.7	+2.5/-1.9
	Jet energy scale	+9.6/-9.9	+13.5/-15.2
	Jet energy resolution	+1.0/-1.0	+0.7/-0.7
	b-tagging efficiency	+30.4/-34.8	+22.9/-25.2
	c-tagging efficiency	+5.0/-5.0	+16.5/-17.3
	Light jet-tagging efficiency	+1.3/-1.3	+11.4/-12.1
	tī cross section	_	+9.9/-10.7
	$t\bar{t}V$ cross section	-	-
	Single top cross section	_	-
	Diboson cross section	_	-
	V+jets normalisation	_	_
	Multijet normalisation	_	-
	W+heavy-flavour fractions	_	_
	tī modeling	_	+15.8/-20.2
	tt+heavy-flavour fractions	-	+25.9/-25.9
	ttH modeling	+1.3/-1.5	-
	Total	+32.5/-36.7	+46.3/-50.1

Big uncertainties on the tt modeling and the heavy flavor fraction of the extra jets in the tt+extra jets

ttH→ttbb: Results

No significant excess is observed.

Summary

- Looking to fermionic decays is crucial to determine the true nature of the newly discovered scalar boson!
- ► VH→Vbb:
 - ▶ 3 channels studied @LHC: Z(II)H, Z(vv)H, W(Iv)H
- ttH→ttbb
 - 2 channels studied @LHC: lepton+jets and di-lepton

Associated production	ATLAS Observed Expected		CMS Observed Expected		
VH→Vbb	5 fb ⁻¹ @ 7 TeV & 13 fb ⁻¹ @ 8TeV		5 fb ⁻¹ @ 7 TeV & 13 fb ⁻¹ @ 8TeV		
	1.8xSM	1.9xSM	2.5xSM	1.2xSM	
ttH→ttbb	5 fb ⁻¹ @ 7 TeV		5 fb ⁻¹ @ 7 TeV & 5 fb ⁻¹ @ 8TeV		
	13.1xSM	10.5xSM	5.8xSM	5.2xSM	

- ▶ No significant excess has been observed in any of the $H \rightarrow bb$ studied channels.
 - CMS: 2.2 σ excess in VH compatible with a SM Higgs
- All analysis are incorporating all 2012 @ 8 TeV dataset!
 - New MVA analysis, new updates and results soon, keep tuned!

Back Up

VH→Vbb: ATLAS event selection

VH→Vbb: CMS BDT inputs

p_{Tri} : transverse momentum of each Higgs daughter	
rip date vere monorman of each riggs dataginer	
<i>m</i> (jj): dijet invariant mass	
<i>p</i> _T (jj): dijet transverse momentum	
$p_{\rm T}({\rm V})$: vector boson transverse momentum (or $E_{\rm T}^{\rm miss}$)	
CSV _{max} : value of CSV for the Higgs daughter with largest CSV value	es
CSV _{min} : value of CSV for the Higgs daughter with second largest CSV value	
$\Delta \phi(V, H)$: azimuthal angle between V (or E_T^{mass}) and dijet	ועכ
$ \Delta \eta(\mathbf{j}) $: difference in η between Higgs daughters training	
$\Delta K(\mathbf{j})$: distance in η - ϕ between Higgs daughters	
N_{aj} : number of additional jets $A\phi(E^{miss}, iot)$; azimuthal angle between E^{miss} and the closest iot (only for $Z(uu)H$)	
$\Delta \varphi(E_{\rm T})$, jet). azimuthal angle between $E_{\rm T}$ and the closest jet (only for $\Sigma(\nu\nu)(1)$)	
Variable $W(\ell\nu)H$ $Z(\ell\ell)H$ $Z(\nu\nu)H$	
$m_{\ell\ell}$ – [75 – 105] –	
$p_{\rm T}(j_1) > 30 > 20 > 60$	
$p_{\rm T}(j_2) > 30 > 20 > 30$	
$p_{T}(jj)$ > 120 - > 130 Selection crit	eria
m(jj) < 250 [80 - 150] (< 250) < 250 for the variat	los in
$p_{\rm T}(V)$ [120 - 170] (> 170) [50 - 100] (> 100) - IOI the value	
$CSV_{max} > 0.40 > 0.50 (> 0.244) > 0.679 $ the three cha	nnels
$CSV_{min} > 0.40 > 0.244 > 0.244$	
-(< 0.40) - $-(< 0.244)$ USEU III LITE D	
$N_{al} = 0 - = 0$ training	
$\Delta \phi(\text{E}^{\text{miss}} \text{ iot}) = $	
$\Delta \psi(E_{\rm T}, jet) = - 20.5$	
$\Delta \varphi(E_T^{\text{muss}}, E_T^{\text{muss}})$ – – – $\langle 0.5 \rangle$	
$\Delta \varphi(\mathbf{V},\mathbf{H}) \qquad - \qquad - \qquad > 2.0$	

b-jet identification : Key ingredient

ATLAS

ATLAS-CONF-2012-100 ATLAS-CONF-2012-097 ATLAS-CONF-2012-043 ATLAS-CONF-2012-040

MV1 tagger:

- Neural network built on outputs of advanced algorithms (IP and SV)
- 70% b-tagging efficiency working point
- ~0.7% mistag rate for light jets

CMS-BTV-12-001

CMS-PAS-BTV-11-004

CMS –

VH→Vbb: Categories

- Improve the sensitivity of the analysis:
 - Split the analysis into separate regions:
 - ATLAS :
 - ▶ **0-leptons events** → six categories in jet multiplicity (2 or 3jets) and in missing E_T (120< E_T^{miss} <160 GeV, 160 < E_T^{miss} < 200 GeV and E_T^{miss} >200 GeV)
 - ▶ **1 or 2 leptons:** 5 categories in the p_T of the vector boson: $p_T^V \le 50 \text{ GeV}, 50 < p_T^V \le 100 \text{ GeV}, 100 < p_T^V \le 150 \text{ GeV}, 150 < p_T^V \le 200 \text{ and } p_T^V > 200 \text{GeV}$
 - **<u>CMS</u>**: split each channel into low or high p_T^V
 - 0-leptons events: $130 < p_T^V < 170 \text{ GeV}$ and $p_T^V > 170 \text{GeV}$
 - 1-lepton events : $120 < p_T^V < 170$ GeV and $p_T^V > 170$ GeV
 - 2-leptons region : $50 < p_T^V < 100$ GeV and $p_T^V > 100$ GeV

VH→Vbb:

CMS :

observed and expected limits for different Higgs mass

$m_{\rm H}({\rm GeV})$	110	115	120	125	130	135
Exp.	0.89	0.91	1.00	1.15	1.39	1.85
Obs.	0.99	1.60	1.64	2.45	3.40	4.19

ATLAS: 0-lepton Higgs candidate

The event contains two identified *b-jets with transverse momenta of 193 GeV and 78 GeV, respectively, with an invariant mass* of 123 GeV. The missing energy in the transverse plane is 271 GeV.

VH→Vbb: Results

ttH→ttbb: Event Selection

Final states with leptons, missing E_T , jets and *b*-tagged jets

- Trigger:
 - ATLAS: I+jets : single lepton trigger, e $p_T > 20$ (22) GeV, $\mu p_T > 18$ GeV
 - CMS: I+jets: single lepton trigger: μ pT > 24 GeV, e pt > 24 GeV and 3 jets pT > 30 GeV (2012) e pT > 27 GeV. veto on second loose lepton for lepton+jets. Dilepton : 2 lepton pT > 17 and 8 GeV(1 tight and 1 loose lepton)
- Offline lepton:
 - ATLAS: I+jets: exactly one isolated lepton (μ : $|\eta| < 2.5$, tight pT > 20 GeV or e: $|\eta| < 2.47$ pT > 25 GeV)
 - CMS: I+jets: exactly one isolated lepton(tight μ : |η| < 2.1, tight pT > 30 GeV, or tight e: |η| < 2.5, tight pT > 30 GeV) Dilepton: one tight μ + one loose (|η| < 2.4, pT > 10 GeV) or one tight e + 1 loose (loose pT > 10 GeV)
- Jets:
 - CMS: anti- k_t 0.5, $|\eta| < 2.4$,
 - ▶ L+jets: \geq 3 jets pT > 40 GeV and 4 pT > 30,
 - Dilepton: ≥ 2 jets pT > 30 GeV
 - ATLAS: anti- k_t 0.4, $|\eta| < 2.5$
 - >= 4 jets with pT > 25
- B-tagging:
 - CMS: CSV :working point: 70% b-jet, 20% c-jet,~ 2% light jets
 - ATLAS: MV1: working point: 70% b-jet, 20% c-jet, <1% light jets