

Search for Higgs to ττ at ATLAS & CMS

Arun Nayak

IRFU/SPP, CEA, Saclay

(On behalf of ATLAS & CMS Collaboration)

Introduction

- A Higgs boson was discovered by ATLAS & CMS (July2012)
 - Driven by high resolution channels : $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ \rightarrow 4\ell$
 - Supported by $H \rightarrow WW \rightarrow 2\ell 2\nu$
- No excess was observed in fermionic channels.
 - Results were compatible with background only hypothesis

Why Higgs to $\tau\tau$?

- Most sensitive channel to probe lepton couplings
 - Important to establish SM predictions
- Large enhancement of production rates in BSM models (MSSM etc..)

What has Changed from ICHEP2012?

- Added more data
- Improved object reconstruction
- Improved analysis technique

ATLAS-CONF-2012-160, CMS-PAS-HIG-13-004

French Contribution

- > Strong involvement of LLR/IN2P3, SPP/IRFU in CMS $H \rightarrow \tau\tau$ analysis
 - Developments of HLT triggers with taus
 - Tau reconstruction, identification, and commissioning
 - Di-tau mass reconstruction
 - Analysis design & optimization
 - Contribution to final result ($e\tau_h$, $\mu\tau_h$ channel)
- \triangleright LAL, Orsay in ATLAS H $\rightarrow \tau\tau$ analysis
 - Di-Tau mass reconstruction & involvement in the analysis

Analysis Overview

Reducing and controlling backgrounds is the key Analysis divided into various channels

ATLAS

ee,μμ,eμ,ττ,eτ,μτ

Gluon Fusion + VBF

CMS

μμ, εμ, ττ, ετ, μτ

Associated production (VH)

 $\ell \tau \tau, \ell \ell \tau \tau, \ell \ell \tau$ (W/Z $\rightarrow \ell \nu / \ell \ell, H \rightarrow \tau \tau$)

di-Tau Mass Reconstruction

- Mass of τ Lepton pair reconstructed via Likelihood technique, based on:
 - τ decay Kinematics
 - Compatibility of reconstructed E_Tmiss with Neutrino hypotheses
 - Exact Matrix Element used for $\tau \rightarrow \ell \nu \nu$
 - Phase-Space is used for $\tau \rightarrow \pi$
 - Nuisance parameters are integrated out

A similar di-tau mass reconstruction is used by **ATLAS** with similar performance

MMC: Missing Mass Calculator

arxiv:1012.4686

Anatomy of the Analysis

EWK

Mostly W+jets Measured from high m_T sideband

Preselection:

- Events selected with well identified and isolated leptons, τ_h
- Topological cuts applied (m_{τ} etc..) depending on the channel

Systematic uncertainties

- Yield uncertainty
- Shape uncertainty from:
 - τ energy scale
 - statistical uncertainty in each bin

Event Categories

> VBF

- 2 Jets
- Large M_{ii} (> ~500 GeV)
- Large difference in pseudorapidity ($\Delta \eta_{ii} > ^3.5$)
- Central Jet Veto
 - No jets in between two tagging jets

► 1 Jet

- >= 1 Jets
- Failing VBF

≥0 Jet

- Mostly constrains lepton and tau systematic uncertainties
- Leptonic channels only

Details are in backup

CMS

The sensitivity of 0/1 Jet category improved by dividing into Low and High p_T tau categories

$M_{\tau\tau}$ Distribution (ATLAS) VBF (2-Jet): Most sensitive category

$M_{\tau\tau}$ Distribution

CMS Preliminary, \sqrt{s} = 7-8 TeV, L = 24.3 fb⁻¹, H \rightarrow τ τ

5×H(125 GeV)→ττ

observed

electroweak

 $Z\rightarrow \tau\tau$

QCD
bkg. uncertainty

dN/dm_{ττ} [1/GeV]

4.5 Εμτ_h

2 jet (VBF)

CMS

7 TeV: 4.9 fb⁻¹ 8 TeV: 19.4 fb⁻¹

VBF (2-jet)

- Enhancement of VBF signal
- Highest S/B

Signal Strength σ/σ_{SM}

Results consistent among all channels and categories

SM Results

Results combining all channels and categories

ATLAS: 17.6 fb-1

95% CL Limit on $\sigma/\sigma_{\text{SM}}$ **ATLAS** Preliminary **L** Observed CL_s ∫ L dt = 4.6 fb⁻¹, √s = 7 TeV --- Expected CL_s $\int L dt = 13.0 \text{ fb}^1$, $\sqrt{s} = 8 \text{ TeV}$ ± **2**σ ± 1σ 150 110 120 130 140 100 m_H [GeV]

At 125: The expected/observed Limit 1.2/1.9

CMS: 24.3 fb-1

At 125:
The expected/observed Limit **0.77/1.81**Observation of flat excess

The observation compatible with S+B hypothesis for a Higgs boson of mass 125 GeV

Compatibility of the Higgs Signal

Combined 1 Jet and VBF

Significance

CMS: 24.3 fb⁻¹

Maximum Significance of 1.5 σ at 110 GeV The Expected/Observed significance @ 125 GeV : 1.7 σ / 1.1 σ

Maximum Significance of **2.93** σ at **120** GeV The Expected/Observed significance

@ 125 GeV : $2.62 \sigma / 2.82 \sigma$

First indication of the new boson coupling to taus as expected from the SM Higgs boson

Mass Measurement

Best Fit Mass: 120⁺⁹₋₇ (stat+syst) GeV

Compatible with $m_H(ZZ) = 125.8 \pm 0.5$ GeV, $m_H(\gamma\gamma) = 125.4 +/- 0.5 +/- 0.6$

Summary

- \triangleright ATLAS has an observed significance of 1.1 σ , based on 17fb⁻¹ of data
 - Results with full data is expected to be available soon
- \triangleright CMS has observed a signal in H \rightarrow ττ channel with a significance of 2.93 σ, based on 24 fb⁻¹ of data
 - First indication that the new boson couples to taus as the SM Higgs boson
 - The Higgs mass in $H \rightarrow \tau\tau$ channel is compatible with resonance of $m_H \sim 125$ GeV observed in diboson channels ($\gamma\gamma$, ZZ, WW)
- > Plans:
 - Re-optimization of the analysis (selection categories etc..)
 - Expect to have further improvements with current data.
 - Produce results for MSSM Higgs with full 7TeV+8TeV data.
 - Higgs boson Properties measurements (coupling, CP properties etc..)

Backup

A $\mu\tau$ VBF candidate

Event Categories (ATLAS)

Categories by Number of jets

ее,μμ,εμ,ετ,μτ

0 jet

eτ, μτ channel for 7 & 8 TeV eμ channel for only 7 TeV

1 jet

events failing 2 jet categories M_{ττi} > 225 GeV

Boosted

2 jets and not falling to VBF p_T (H) > 100 GeV (vector sum of leptons and Etmiss)

VBF

 $\Delta\eta(jj) > 3.0$ $M_{jj} > 500 (400) \text{ GeV}$ Central Jet Veto
Cut on sum Pt $(\ell, \tau, \text{ jet, } E_T^{\text{miss}})$ Lepton centrality

Additional VH category for ee,µµ,eµ

2 jet VH

2 jet events not falling to VBF and boosted categories $\Delta \eta(jj) < 2.0$ 30 GeV $< M_{ij} < 160$ GeV

Boosted

At least one jet with large pT and not falling to VBF $DR(\tau 1, \tau 2) < 1.9$

$\tau_{\mathsf{h}} \tau_{\mathsf{h}}$

 $\Delta \eta(jj) > 2.6$ $M_{jj} > 350 \text{ GeV}$ Lepton centrality

VBF

Cuts on leptons, jets, E_T^{miss} are dependent on channels E_T^{miss} cut applied in almost all categories b-tag veto applied to all categories

Lepton (au for ℓau) $extsf{p}_{ extsf{I}}$

Event Categories (CMS)

Enrich Signal wrt to Z->tt background

Number of Jets (Jet $p_T > 30 \text{ GeV}$)

μμ,εμ,ετ,μτ

Ojet, Low pT

High Background Constrains Fit

1Jet, Low pT

Signal Enhancement wrt Z

Ojet, high pT

Lepton pT spectrum is harder from Higgs Reduce QCD

1Jet, high pT

Enhancement from both lepton and jet (better mass resolution)

VBF (2 jet)

- ≥ 2Jet
- Central Jet veto
- m(jj) > 500 GeV
- $|\Delta \eta(jj)| > 3.5$

Tau (muon in $e\mu$) > 40 (35) GeV for high p_T category.

1Jet

1 jet, high pT(H) requirement

VBF (2 Jet)

2 jets, high $p_T(H)$ requirement, m(jj) > 250 GeV, $|\Delta \eta(jj)| > 2.5$

Lepton (au for ℓau) $\mathsf{p}_{\!\scriptscriptstyle \mathsf{I}}$

Event Categories (CMS)

Enrich Signal wrt to Z->tt background

Number of Jets (Jet $p_T > 30 \text{ GeV}$)

μμ, εμ, ετ, μτ

Do not Fit for signal

Propagate Constraint from 0 jet

Tau (muon in $e\mu$) > 40 (35) GeV for high p_{T} category.

1Jet, Low pT

Signal Enhancement wrt Z

1Jet, high pT

Enhancement from both lepton and jet (better mass resolution)

VBF (2 jet)

- ≥ 2Jet
- Central Jet veto
- m(jj) > 500 GeV
- $|\Delta \eta(jj)| > 3.5$

1Jet

1 jet, high pT(H) requirement

VBF (2 Jet)

2 jets, high $p_T(H)$ requirement, m(jj) > 250 GeV, $|\Delta n(ii)| > 2.5$

VH Categories (CMS)

W/Z decay to leptons

WH -> $\ell \tau \tau$

 $ZH \rightarrow \ell\ell\tau\tau$

1 Hadronic τ τe[±]μ[±] τμ[±]μ[±]

2 Hadronic τ ττε ττμ ee/μμ+ All possible combinations

VH, H->WW-> τ + X is also included in the channel

VH Exclusion Limit

Exclusion

Sensitivity by Channel & Category

Significance

Limits at low mass

The (*) symbol indicates

correlation between

separate channels.

The (†) symbol indicates correlation between separate categories

Uncertainties

Experimental Uncertainties		Propagation into Event Categories		
Uncertainty	Uncert.	0-Jet	1-Jet	VBF
Electron ID & Trigger (†*)	±2%	±2%	±2%	±2%
Muon ID & Trigger (†*)	±2%	±2%	±2%	±2%
Tau ID & Trigger (†)	±8%	±8%	±8%	±8%
Tau Energy Scale (†)	±3%	±3%	±3%	±3%
Electron Energy Scale (†)	±1%	±1%	±1%	±1%
JES (Norm.) (†*)	$\pm 2.5 - 5\%$	∓3 − 15%	$\pm 1 - 6\%$	$\pm 5 - 20\%$
MET (Norm.) (†*)	±5%	$\pm 5 - 7\%$	$\pm 2 - 7\%$	$\pm 5 - 8\%$
b-Tag Efficiency (†*)	±10%	∓2%	∓2 − 3%	∓3%
Mis-Tagging (†*)	±30%	∓2%	∓2%	∓2 − 3%
Norm. Z production (†*)	±3%	±3%	±3%	±3%
$Z \rightarrow \tau \tau$ Category	±3%	$\pm 0 - 5\%$	$\pm 3 - 5\%$	$\pm 10 - 13\%$
Norm. $t\bar{t}$ (†* ex.vbf)	±10%	±10%	±10%	$\pm 12 - 33\%$
Norm. Diboson (†* ex. vbf)	$\pm 15 - 30\%$	$\pm 15 - 30\%$	$\pm 15 - 30\%$	$\pm 15 - 100\%$
Norm. QCD Multijet	$\pm 6 - 32\%$	$\pm 6 - 32\%$	$\pm 9 - 30\%$	$\pm 19 - 35\%$
Lumi 7 TeV (8 TeV)	±2.2(4.2)%	$\pm 2.2(4.2)\%$	$\pm 2.2(4.2)\%$	±2.2(4.2)%
Norm. W+jets	$\pm 10 - 30\%$	$\pm 20 - 27\%$	$\pm 10 - 33\%$	$\pm 12.4\% - 30\%$
Norm. $Z \to \ell \ell$: e fakes τ_h (†)	±20%	±20%	±36%	±22%
Norm. $Z \rightarrow \ell\ell$: μ fakes τ_h (†)	±30%	±30%	±30%	±30%
Norm. $Z \to \ell\ell$: jet fakes τ_h	±20%	±20%	±20%	±40%

Theory Uncertainties (SM)		Propagation into Limit Calculation		
Uncertainty	Uncert.	0-Jet 1-Jet VBF		
PDF (†*)	-	-	$\pm 2 - 8\%$	$\pm 2 - 8\%$
$\mu_r/\mu_f(gg \to H)$ (†*)	-	-	±10%	±30%
$\mu_r/\mu_f(qq \to H)$ (†*)	-	-	±4%	±4%
$\mu_r/\mu_f(qq \to VH)$ (†*)	-	-	$\pm 4\%$	±4%
UE & PS (†*)	-	-	$\pm 4\%$	$\pm 4\%$

Mττ Distribution

CMS

7 TeV: 4.9 fb-1

8 TeV: 19.4 fb-1

1Jet , High Pt 2nd best Category

Enhances Gluon Fusion signal

50 L1 jet, high p

100

40

30

20

10

5×H(125 GeV)→ττ

300

m_{rr} [GeV]

observed

QCD

200

electroweak

bkg. uncertainty

CMS Preliminary, \sqrt{s} = 7-8 TeV, L = 24.3 fb⁻¹, H $\rightarrow \tau \tau$

25 L1 jet, high p

15

5×H(125 GeV)→ττ

m_{rr} [GeV]

observed

QCD
bkg. uncertainty

Combined 1 Jet & VBF

0 jet

VBF Variables

MET

Tau

Limits by Period

Limits

Limits by Category

And

By Channel

± **2**σ

130

140

120

Event Yields (CMS)

 $\mu \tau_h$

Process	0-Jet	1-Jet high p_{T}	VBF	
$Z\rightarrow \tau\tau$	84833 ± 1927	4686 ± 232	109 ± 11	
QCD	18313 ± 478	481 ± 38	48 ± 7	
EWK	8841 ± 653	1585 ± 153	63 ± 9	
tť	11 ± 1	155 ± 11	5 ± 1	
Total Background	111998 ± 2090	6908 ± 281	225 ± 16	
$H\rightarrow \tau\tau$	- ± -	73 ± 13	11 ± 2	
Observed	112279	7011	240	

Signal Eff.

$gg \rightarrow H$	-	$1.99 \cdot 10^{-3}$	
$qq \rightarrow H$	-	$4.09 \cdot 10^{-3}$	$3.46 \cdot 10^{-3}$
$qq \rightarrow Ht\bar{t} \text{ or VH}$	-	$3.00 \cdot 10^{-3}$	$1.60 \cdot 10^{-5}$

. τ	hT_h	U
Process	1-Jet	VBF
$Z \rightarrow \tau \tau$	428 ± 90	47 ± 28
QCD	210 ± 31	61 ± 10
EWK	41 ± 9	4 ± 1
tť	29 ± 6	2 ± 2
Total Background	709 ± 95	114 ± 30
$H \rightarrow \tau \tau$	9 ± 4	4 ± 2
Observed	718	120

Signal Eff.

$gg \rightarrow H$	$2.52 \cdot 10^{-4}$	4.99 ·10-5
$qq \rightarrow H$	$5.93 \cdot 10^{-4}$	$1.20 \cdot 10^{-3}$
	$9.13 \cdot 10^{-4}$	$3.59 \cdot 10^{-5}$

 $e au_h$

Process	0-Jet	1-Jet high p_T	VBF
$Z\rightarrow \tau\tau$	25161 ± 708	792 ± 62	47 ± 6
QCD	7706 ± 307	3 ± 0.3	17 ± 4
EWK	9571 ± 510	365 ± 53	44 ± 6
tī	4 ± 0.5	47 ± 4	4 ± 1
Total Background	42443 ± 924	1207 ± 82	113 ± 9
$H \rightarrow \tau \tau$	- ± -	15 ± 3	5 ± 1
Observed	42481	1217	117

Signal Eff.

gg→ H	-	$3.94 \cdot 10^{-4}$	
$qq \rightarrow H$	-	$1.10 \cdot 10^{-3}$	$1.78 \cdot 10^{-3}$
qq→ Ht t or VH	-	$8.30 \cdot 10^{-4}$	$1.46 \cdot 10^{-6}$

eμ

Process	0-Jet	1-Jet high p _T	VBF
$Z\rightarrow \tau\tau$	48882 ± 1282	1830 ± 105	61 ± 6
QCD	4374 ± 249	395 ± 36	19 ± 2
EWK	1185 ± 89	461 ± 44	7 ± 1
tī	74 ± 5	1100 ± 66	19 ± 2
Total Background	54514 ± 1309	3785 ± 137	105 ± 7
$H\rightarrow \tau\tau$	- ± -	23 ± 4	5 ± 0.6
Observed	54694	3774	118

Signal Eff.

$gg \rightarrow H$	-	$6.04 \cdot 10^{-4}$	
$qq \rightarrow H$	-	$1.37 \cdot 10^{-3}$	
qq→ Ht t or VH	-	$1.38 \cdot 10^{-3}$	$1.32 \cdot 10^{-5}$

Properties (ATLAS)

ATLAS Categories ($\ell\ell$)

Table 2: The categorization of the $H \to \tau_{lep}\tau_{lep}$ analysis. The JVF cut is |JVF| > 0.75 for 7 TeV data, the lepton centrality is not applied for 7 TeV analysis, and the 0-jet category is not used for 8 TeV data analysis.

Boosted	2-jet VH	1-jet					
Pre-selection: exactly two leptons with opposite charges							
$30 \text{ GeV} < m_{\ell\ell} < 75 \text{ GeV} \ (30 \text{ GeV} < m_{\ell\ell} < 100 \text{ GeV})$							
for same-flavor (different-flavor) leptons, and $p_{T,\ell 1} + p_{T,\ell 2} > 35 \text{ GeV}$							
	3						
$E_{\rm T}^{\rm miss} > 40 \text{ GeV} \ (E_{\rm T}^{\rm miss} > 20 \text{ GeV}) \text{ for same-flavor (different-flavor) leptons}$							
$H_{\rm T}^{\rm miss} > 40$ GeV for same-flavor leptons							
$0.1 < x_{1,2} < 1$							
$0.5 < \Delta \phi_{\ell\ell} < 2.5$							
excluding 2-jet VBF	$p_{T,j2} > 25 \text{ GeV (JVF)}$	excluding 2-jet VBF,					
		Boosted and 2-jet VH					
$p_{T,\tau\tau} > 100 \text{ GeV}$	excluding Boosted	$m_{\tau\tau j} > 225 \text{ GeV}$					
b-tagged jet veto	$\Delta \eta_{jj} < 2.0$	b-tagged jet veto					
	$30 \text{ GeV} < m_{jj} < 160 \text{ GeV}$						
_	b-tagged jet veto						
0-jet (7 TeV only)							
Pre-selection: exactly two leptons with opposite charges							
Different-flavor leptons with 30 GeV $< m_{\ell\ell} < 100$ GeV and $p_{T,\ell 1} + p_{T,\ell 2} > 35$ GeV							
$\Delta\phi_{\ell\ell}>2.5$							
b-tagged jet veto							
	selection: exactly two let $GeV < m_{\ell\ell} < 75 \text{ GeV}$ (avor (different-flavor) let one jet with $p_T > 40 \text{ GeV}$ ($E_T^{miss} > 20 \text{ GeV}$) for $H_T^{miss} > 40 \text{ GeV}$ for $0.1 < 20.5 < \Delta 60$ excluding 2-jet VBF $p_{T,\tau\tau} > 100 \text{ GeV}$ b -tagged jet veto $-$ selection: exactly two let optons with 30 GeV $< m$ $\Delta \phi \ell \ell$	selection: exactly two leptons with opposite charges $GeV < m_{\ell\ell} < 75 \ GeV \ (30 \ GeV < m_{\ell\ell} < 100 \ GeV)$ avor (different-flavor) leptons, and $p_{T,\ell 1} + p_{T,\ell 2} > 3$ one jet with $p_T > 40 \ GeV \ (JVF_{jet} > 0.5 \ if \ \eta_{jet} < 20 \ GeV)$ for same-flavor (different-flavor) $H_T^{miss} > 20 \ GeV$ for same-flavor leptons $0.1 < x_{1,2} < 1$ $0.5 < \Delta\phi_{\ell\ell} < 2.5$ excluding 2-jet VBF $p_{T,j2} > 25 \ GeV \ (JVF)$ $p_{T,\tau\tau} > 100 \ GeV$ excluding Boosted $p_{T,\tau\tau} > 1$					

ATLAS Categories ($\ell\tau$)

Table 3: Event requirements applied in the different categories of the $H \to \tau_{lep} \tau_{had}$ analysis. Requirements marked with a triangle (\triangleright) are categorization requirements, meaning that if an event fails that requirement it is still considered for the remaining categories. Requirements marked with a bullet (\bullet) are only applied to events passing all categorization requirements in a category; events failing such requirements are discarded.

7 Te	ėV	8 TeV		
VBF Category	Boosted Category	VBF Category	Boosted Category	
⊳ p _T ^τ had-vis >30 GeV	_	► p _T ^τ had-vis >30 GeV	⊳ p _T ^{τhad-vis} >30 GeV	
$\triangleright E_{\rm T}^{\rm miss} > 20 \text{ GeV}$	$\triangleright E_{\mathrm{T}}^{\mathrm{miss}} > 20 \text{ GeV}$	$\triangleright E_{\mathrm{T}}^{\mathrm{miss}} > 20 \text{ GeV}$	$\triangleright E_{\mathrm{T}}^{\mathrm{miss}} > 20 \text{ GeV}$	
▶ ≥ 2 jets	$p_{\mathrm{T}}^{\mathrm{H}} > 100 \mathrm{GeV}$	≥ 2 jets	$p_{\rm T}^{\rm H}$ > 100 GeV	
$p_{\rm T}^{j1}, p_{\rm T}^{j2} > 40 \text{ GeV}$	$> 0 < x_1 < 1$	$p_T^{j1} > 40, p_T^{j2} > 30 \text{ GeV}$	$\triangleright 0 < x_1 < 1$	
$\triangleright \Delta \eta_{jj} > 3.0$	$\triangleright 0.2 < x_2 < 1.2$	$\triangleright \Delta \eta_{jj} > 3.0$	$\triangleright 0.2 < x_2 < 1.2$	
<i>m</i> _{jj} > 500 GeV	▶ Fails VBF	<i>m</i> _{jj} > 500 GeV	▶ Fails VBF	
▶ centrality req.	-	▶ centrality req.	_	
$\triangleright \eta_{j1} \times \eta_{j2} < 0$	-	$\triangleright \eta_{j1} \times \eta_{j2} < 0$	_	
$\triangleright p_{\mathrm{T}}^{\mathrm{Total}} < 40 \mathrm{GeV}$	_	$\triangleright p_{\mathrm{T}}^{\mathrm{Total}} < 30 \mathrm{GeV}$	_	
_	_	▶ <i>p</i> _T ^ℓ >26 GeV	_	
• $m_{\rm T}$ <50 GeV	• m _T <50 GeV	• m _T <50 GeV	• m _T <50 GeV	
• $\Delta(\Delta R) < 0.8$	• $\Delta(\Delta R) < 0.8$	$\bullet \ \Delta(\Delta R) < 0.8$	$\bullet \ \Delta(\Delta R) < 0.8$	
• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 1.6$	• $\sum \Delta \phi < 2.8$	_	
_	_	• b-tagged jet veto	 b-tagged jet veto 	
1 Jet Category	0 Jet Category	1 Jet Category	0 Jet Category	
$\triangleright \ge 1$ jet, $p_{\rm T} > 25$ GeV	▶ 0 jets <i>p</i> _T >25 GeV	$\triangleright \ge 1 \text{ jet}, p_{\text{T}} > 30 \text{ GeV}$	$\triangleright 0$ jets $p_{\rm T} > 30$ GeV	
$\triangleright E_{\mathrm{T}}^{\mathrm{miss}} > 20 \; \mathrm{GeV}$	$\triangleright E_{\mathrm{T}}^{\mathrm{miss}} > 20 \mathrm{GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 \text{ GeV}$	$\triangleright E_{\mathrm{T}}^{\mathrm{miss}} > 20 \text{ GeV}$	
▶ Fails VBF, Boosted	▶ Fails Boosted	▶ Fails VBF, Boosted	▶ Fails Boosted	
• m _T <50 GeV	• m _T <30 GeV	• m _T <50 GeV	• m _T <30 GeV	
• $\Delta(\Delta R) < 0.6$	• $\Delta(\Delta R) < 0.5$	• $\Delta(\Delta R) < 0.6$	• $\Delta(\Delta R) < 0.5$	
• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	
_	$\bullet \ p_{\mathrm{T}}^{\ell} - p_{\mathrm{T}}^{\tau} < 0$	_	$\bullet \ p_{\mathrm{T}}^{\ell} - p_{\mathrm{T}}^{\tau} < 0$	

ATLAS Categories (ττ)

Table 4: Summary of the event selection and categories for the $H \to \tau_{had}\tau_{had}$ channel.

	That that the					
Cut	Description					
Preselection	No muons or electrons in the event					
	Exactly 2 medium τ_{had} candidates matched with the trigger objects					
	At least 1 of the τ_{had} candidates identified as tight					
	Both τ_{had} candidates are from the same primary vertex					
	Leading $\tau_{\text{had-vis}}$ $p_T > 40$ GeV and sub-leading $\tau_{\text{had-vis}}$ $p_T > 25$ GeV, $ \eta < 2.5$					
	τ _{had} candidates have opposite charge and 1- or 3-tracks					
	$0.8 < \Delta R(\tau_1, \tau_2) < 2.8$					
	$\Delta \eta(\tau, \tau) < 1.5$					
	if E_T^{miss} vector is not pointing in between the two taus, min $\{\Delta\phi(E_T^{\text{miss}}, \tau_1), \Delta\phi(E_T^{\text{miss}}, \tau_2)\}$ < 0.2 π					
VBF	At least two tagging jets, j_1 , j_2 , leading tagging jet with $p_T > 50$ GeV					
	$\eta_{j1} \times \eta_{j2} < 0, \Delta \eta_{jj} > 2.6$ and invariant mass $m_{jj} > 350$ GeV					
	$\min(\eta_{j1}, \eta_{j2}) < \eta_{\tau 1}, \eta_{\tau 2} < \max(\eta_{j1}, \eta_{j2})$					
	$E_{\rm T}^{\rm miss} > 20~{ m GeV}$					
Boosted	Fails VBF					
	At least one tagging jet with $p_T > 70(50)$ GeV in the 8(7) TeV dataset					
	$\Delta R(\tau_1, \tau_2) < 1.9$					
	$E_{\rm T}^{\rm miss} > 20~{\rm GeV}$					
	if $E_{\rm T}^{\rm miss}$ vector is not pointing in between the two taus, min $\left\{\Delta\phi(E_{\rm T}^{\rm miss},\tau_1),\Delta\phi(E_{\rm T}^{\rm miss},\tau_2)\right\}<0.1\pi$.					

Boost (ATLAS)

1 jet (ATLAS)

9

0 jet (ATLAS)

Past CMS results

SM Higgs	Significance					
$m_{\rm H}$ [GeV]	-2σ	-1σ	Median	$+1\sigma$	$+2\sigma$	Observed
110	0.50	1.32	2.25	2.99	3.55	1.68
115	0.59	1.30	2.33	3.12	3.68	1.74
120	0.70	1.53	2.49	3.18	3.78	1.49
125	0.61	1.47	2.45	3.19	3.74	1.50
130	0.54	1.41	2.32	3.08	3.66	1.17
135	0.39	1.23	2.10	2.79	3.40	0.76
140	0.30	1.01	1.89	2.60	3.10	0.67
145	0.23	0.81	1.65	2.30	2.77	0.73

Analysis Strategy

MSSM Categories

Non-bTag

 \leq 1 jet with p_T > 30 GeV,

< 1 b-Tagged Jet with p_{T}

> 20 GeV

Dominated by ggH

b-Tag

 \leq 1 jet with p_T > 30 GeV,

≥ 1 b-Tagged Jet with p_T

> 20 GeV

Dominated by bbH

MSSM Results

τ_h Identification

CMS:

- Decay Mode based τ_h identification using Particle flow objects : charged hadrons + photons
- MVA Isolation :
 - Isolation p_T summed in rings around tau
 - \circ BDT trained against jet -> τ fakes

ATLAS:

- Reconstruction seeded by anti-kt jets(R=0.4)
 - calibrated 3D topological clusters
 - good quality tracks with pT > 1 GeV
- discriminating variables
 - Multivariate discriminants combining information from calorimeter and tracking.

More details in the Talk by Colin Bernet & Poster by Ivo Naranjo Fong

Jets

- Jet production rate grows rapidly with pileup
- CMS: MVA discriminant against pileup jets, exploiting shape and tracking variables
- ATLAS: Use Jet Vertex Fraction (JVF)
 defined as the fraction of sum p_T of
 tracks in a jet assigned to PV to the
 sum p_T of tracks assigned to any
 vertex.

Typical jet

B-Tagging: Lifetime based b-tagger combining secondary vertex and track impact parameter information

Pileup jet

Missing Transverse Momentum

CMS

MVA Regression to compute best MET

Constructed out of 5 best METs (Recoils)

Significant Improvement in MET resolution and pileup dependency

Key to separate signal from background, improve di-tau mass reconstruction

ATLAS

Pile-up mitigation of MET

Using Jet-Vertex-Fraction (JVF) and soft-term-vertex-fraction (STVF)

STVF: ratio of sum pT of tracks associated to primary vertex and all tracks outside reconstructed objects

