

SM Higgs boson studies at the Tevatron

Gregorio Bernardi,

LPNHE Paris

On behalf of CDF and Dzero

LHC-France, Annecy, April 4, 2013

Thanks to all CDF & DZero colleagues,

Special thanks to L. Zivkovic

Outline

- Historical perspectives/Current situation
- Low mass (H→bb) Higgs searches
- Combinations of Standard Model searches
- Higgs Couplings
- Prospects

All Final individual channels and combinations from CDF and D0 are published or submitted.

Historical perspective (→ summer 2012)

- LEP (1989 2000): m_H > 114.4 GeV@95% CL
- At hadron colliders:
- Tevatron Run II (2002 2011):
 - First post-LEP 95%CL exclusion (july 2009)
 - First evidence of a Higgs-like particle decaying to a pair of b-quarks (July 2012)
- LHC (2010 2012):
 - Excluded wide mass range (111 122 GeV and 127 600 GeV)
 - Discovered the new Higgs-like boson mainly through γγ and ZZ decays (July 2012)

Current situation

As presented at

Moriond and Aspen

- LHC (2011 2012):
 - Since July 2012 progress in each channel
 - Observation confirmed in bosonic channel
 - ATLAS: $m_H = 125.5 \pm 0.2$ (stat) ± 0.6 (sys) GeV
 - CMS: $m_H = 125.8 \pm 0.4 \text{ (stat)} \pm 0.4 \text{ (sys)} \text{ GeV}$
 - H→bb, with ~18 fb⁻¹: data deficit at Atlas and ~2.2 σ excess at CMS
 - strong indications (2.9 σ)of fermionic decays at LHC from CMS H $\rightarrow \tau\tau$ (full stat) but low ATLAS signal (1.1 σ , 1.7 σ expected, 18fb⁻¹)
- → While it "is" a Higgs boson, the fermionic decays are not firmly established.

Indirect SM Higgs constraints

Recently updated top quark and W boson mass measurements from the Tevatron

$$m_W = 80385 \pm 15 \text{ MeV}$$

$$m_t = 173.2 \pm 0.9 \text{ GeV}$$

(LHC getting close on top mass)

The boson discovered at the LHC looks like the SM Higgs also from the indirect point of view → Tevatron update on W mass will provide further constraints

Tevatron Luminosity

Higgs Production and Decay at the Tevatron

"High" mass (m_H > 135 GeV) dominant decay:

$$H \to WW^{(*)} \quad gg \to H \to WW \to \ell \nu \ell' \nu'$$

Low mass ($m_H < 135 \text{ GeV}$) dominant decay:

use associated production modes to get better S/B

These are the main search channels, but there is an extensive program of measurements in other channels to extend the sensitivity to a SM Higgs

Gregorio Bernardi / LPNHE-Paris

Low Mass Higgs Channels

ZH→IIbb: II+bb Low background Fully constrained Small Signal

WH→lvbb: MET+l+bb

Large production cross section Higher backgrounds than in ZH→llbb

ZH→vvbb: MET+bb

signal 3x larger than ZH→llbb (+ contributions from WH) difficult backgrounds

Low Mass Higgs Searches

Increase lepton reconstruction and selection efficiencies

Understand background

Specific to low mass analyses:

B-tagging (next slide)

Optimize dijet mass resolution

- → needs precise calibration and resolution for gluon and quark jets separately
- → new techniques still explored(NN, tracks + calorimeter cells)

We also optimize dijet mass resolution with Kinematic fit in ZH→IIbb (15% sensitivity gain)

Low Mass Higgs Searches

Reduce the background by tagging b-quark jets

Major step forward with HOBIT, MVA tagger @ CDF (D0 already use one)

- separate b-jet from light-jets

24 operating points allows for s/b optimizations in sub-samples →

next step would be to separate
 b from c with dedicated algorithm

From Dijet mass to Multi Variate Analysis

- To improve S/B → utilize full kinematic event information
- Multi Variate Analyses
 - Neural Networks
 - Boosted Decision Trees

Or use Matrix Element Calculations to determine probability for an event to be signal or background like

- Approaches validated in Single Top observation @ Tevatron
- Combine these approaches
- Visible gain obtained (~25% in sensitivity)

Final Discriminant

Latest Results from DØ

~10-15% gain on intrinsic sensitivity compared to Moriond 2012 result (i.e. on top of gain due to luminosity)

Updated vvbb (метьь) channel at CDF

Reject Multijet background with
 dedicated Neural Network

 Separate signal from the remaining backgrounds using second NN

- At $m_{H} = 125 \text{ GeV}$: obs = 3.06*SM; exp = 3.33*SM
- 8% sensitivity improvement at m_H = 125 GeV (Compared to July 2012)
- Average expected improvement over the whole mass range: 14%

Latest Results from CDF

>20% gain on intrinsic sensitivity compared to 2011

Cross check on Diboson process

Benchmark of H→bb searches with real data.

VZ→leptons + heavy flavor jets

For $m_H = 125 \text{ GeV}$

WH \rightarrow lvbb: $\sigma = 16$ fb ZH \rightarrow vvbb: $\sigma = 9$ fb ZH \rightarrow 11bb: $\sigma = 3$ fb

Total VH: $\sigma = 28$ fb

Replace H with Z

WZ \rightarrow lvbb: $\sigma = 105$ fb

 $ZZ \rightarrow vvbb$: $\sigma = 73 \text{ fb}$

 $ZZ \rightarrow 11bb$: $\sigma = 24 \text{ fb}$

Total VZ: $\sigma = 202 \text{ fb}$

At 115 GeV, VZ yield is ~7 times larger than VH, but VZ→Vbb has much more W+jets backgrounds, and difficult background from WW, so VZ sensitivity only ~3 times higher than VH

Apply similar analysis as low mass H→bb analysis, and check sensitivity.

Benchmarks: Dibosons to Heavy Flavor

Diboson lvbb

Diboson IIbb

Diboson vvbb

Combining all three channels, maintaining proper correlation among channels, keeping WW as background, → Evidence (>3 sigma / experiment) for WZ/ZZ decaying to H.F.

Benchmarks: Dibosons to Heavy Flavor

CDF- D0 combination on the same dataset/techniques as for H→bb:

→ ~ 4.5 sigma significance

cross-section: 3.9 +/- 0.9 pb (NLO: 4.4 +/- 0.3 pb)

→ Since there is a light SM Higgs, we should "see" it!

Higgs Sensitivity / Log Likelihood Ratio plot

$$LLR = -2\ln\frac{P(s+b)}{P(b)}$$

P - Poisson likelihood of B or S+B hypothesis

The separation between LLR_b (background-only hypothesis) and LLR_{s+b} (signal-plus-backgroundhypothesis) provides a measure of the discriminating power of the search

The width of the LLR_b , distribution (1 s.d. and 2 s.d. bands) provides an estimate of how sensitive the analysis is to a signal-like background fluctuation in the data, taking account of the presence of systematic uncertainties

The value of LLR_{obs} relative to LLR_{s+b} and LLR_b indicates whether the data distribution appears to be more like signal-plus-background or background-only.

Combined Log-Likelihood Ratio for H→bb

Shape consistent with LLR expected in presence of 125 GeV Higgs, prefers slightly stronger strength than SM

Combined Cross section * BR measurement

$$(\sigma_{WH}+\sigma_{ZH}) imes \mathcal{B}(H o bar{b})$$
 = 0.19 \pm 0.09 (stat $+$ syst) pb SM Higgs @ 125 GeV: 0.12 ± 0.01 pb

CDF and D0 Combinations for all channels

CDF & D0 single-experiment combinations of all SM Higgs search channels($H\rightarrow WW$, $H\rightarrow bb$, $H\rightarrow \gamma\gamma+$ other)

Remarkably similar shapes:

excess <1 sigma below ~110 GeV, broad excess around ~120-140 GeV, exclusion around ~165 GeV

Observed 95% CL exclusion:

 $90 < m_H < 102 \text{ GeV}, 152 < m_H < 172 \text{ GeV}$

At $m_H = 125$ GeV: Exp. limit: 1.46 x SM Obs. limit: 2.89 x SM Observed 95% CL exclusion:

 $90 < m_H < 101 \text{ GeV}, 157 < m_H < 178 \text{ GeV}$

At $m_H = 125$ GeV: Exp. limit: 1.66 x SM Obs. limit: 2.92 x SM

Signal strenght: CDF and D0 combinations

For m_H @ 125 GeV

1.40 ^{+0.92}-0.88

1.54 +0.77 -0.73

Signal strenght per channel

	DØ	CDF
Combination	$1.40^{+0.92}_{-0.88}$	$1.54_{-0.73}^{+0.77}$
$H o \gamma \gamma$	4.20 +4.60 -4.20	$7.81_{-4.42}^{+4.61}$
$ extstyle H ightarrow au^+ au^-$	$3.96^{+4.11}_{-4.38}$	$0.00^{+8.44}_{-0.00}$
$H \rightarrow W^+W^-$	$1.90 {}^{+1.63}_{-1.52}$	$0.00^{+1.78}_{-0.00}$
$VH ightarrow Vbar{b}$	$1.23^{+1.24}_{-1.17}$	1.72 ^{+0.92} -0.87
$t\bar{t}H \rightarrow t\bar{t}b\bar{b}$	N/A	$9.49^{+6.60}_{-6.28}$

Full Tevatron combination

Significant excess, 2-3 sigma for 115→140 GeV

- Expected exclusion: $90 < m_H < 121$ GeV, $140 < m_H < 184$ GeV Observed exclusion: $90 < m_H < 107$ GeV, $149 < m_H < 182$ GeV
- 95% CL limit at $m_H=125$ GeV: 1.09xSM (expected), 2.49xSM (observed)

Quantifying the Excess: p-values

Local p-value distribution for background-only hypothesis:

local p-value at $m_H=125$ GeV: 3.1σ (2.0σ expected)

Quantifying the signal: Best Fit Signal Rate

- Maximum likelihood fit to data with signal rate as free parameter.
- Best-fit signal rate at m_H =125 GeV:

$$\left(\sigma_{fit}/\sigma_{SM}=1.44\pm0.59\right)$$

Consistent with SM Higgs. Reasonably consistent across channels.

Tevatron Run II, L_{int} ≤ 10 fb⁻¹

Probing Higgs Boson Couplings

- Several production and decay mechanisms contribute to signal rates per channel
 - → interpretation is difficult
- A better option: measure deviations of couplings from the SM prediction (arXiv:1209.0040). Basic assumptions:
 - there is only one underlying state at m_H~125 GeV,
 - it has negligible width,
 - it is a CP-even scalar (only allow for modification of coupling strengths, leaving the Lorentz structure of the interaction untouched).

Additional assumption made in this study:

- no additional invisible or undetected Higgs decay modes.
- Under these assumptions all production cross sections and branching ratios can be expressed in terms of a few common multiplicative factors to the SM Higgs couplings. Examples:

$$\sigma(gg \to H)BR(H \to WW) = \sigma_{SM}(gg \to H)BR_{SM}(H \to WW) \frac{\kappa_g^2 \kappa_w^2}{\kappa_H^2}$$

$$\sigma(WH)BR(H \to bb) = \sigma_{SM}(WH)BR_{SM}(H \to bb) \frac{\kappa_w^2 \kappa_b^2}{\kappa_H^2}$$

$$\kappa_g = f(\kappa_t, \kappa_b, M_H)$$

$$\kappa_H = f'(\kappa_t, \kappa_b, \kappa_\tau, \kappa_w, \kappa_z, M_H)$$

Probing Higgs Boson Couplings: Benchmark I

 Simplest scenario of measuring one coupling deviation at a time assuming SM values for the others.

- Preference for negative value for $\kappa_W(\kappa_f)$ when $\kappa_f = 1(\kappa_W = 1)$ due to excess in $H \rightarrow \gamma \gamma$
- Sensitivity to κ_Z mainly though ZH→IIbb, ννbb channels → posterior density is nearly symmetric
 Best fit: κ_Z = ±1.05

Probing Higgs Boson Couplings: Benchmark II

- Both κ_{W} and κ_{7} vary independently
 - κ_f integrated over
 - Best fit: $(\kappa_W, \kappa_7) = (1.25, \pm 0.90)$
- The point $(\kappa_W, \kappa_Z) = (0, 0)$ corresponds to NO Higgs boson production or decay in the most sensitive search modes at the Tevatron and is not included within the 95% C.L. region due to the significant excess of events in the SM Higgs boson searches @ 125 GeV

Probing Higgs Boson Couplings: Benchmark II

Probe SU(2)_V custodial symmetry by measuring the ratio $\lambda_{WZ} = \kappa_W / \kappa_Z$

- Measure
$$\theta_{WZ}$$
 =tan⁻¹(κ_Z/κ_W)=tan⁻¹($1/\lambda_{WZ}$)

$$\theta_{WZ} = 0.68^{+0.21}_{-0.41} \rightarrow \lambda_{WZ} = 1.24^{+2.34}_{-0.42}$$

Probing Higgs Boson Couplings: Benchmark III

• Measure simultaneously κ_V and κ_f (assuming λ_{WZ} =1).

- Asymmetry is from the excesses in the H $\rightarrow \gamma\gamma$
- Two minima: $(\kappa_{V'}, \kappa_{f}) = (1.05, -2.40)$ and $(\kappa_{V'}, \kappa_{f}) = (1.05, 2.30)$
- The integral of the posterior density in the (+,+) quadrant is 26% of the total, while the remaining 74% of the integral of the posterior density is contained within the (+,-) quadrant

Summary and Outlook

- Latest Tevatron results based on full Run II dataset in all major search channels are now submitted to PRD.
- Previously published evidence for WX/ZX production with X→bb, where X is consistent with a SM Higgs boson of 125 GeV, as the newly discovered particle by ATLAS & CMS is so far the only evidence for fermionic decays of the Higgs
- The H→bb channel is unlikely to be seen at the 5 sigma level before the 2015 LHC Run, except maybe through combination of all results available.
- Combining all channels, Tevatron has achieved 95%CL SM sensitivity over almost all the foreseen accessible mass range (90 185 GeV), a good performance given the intergrated Luminosity and center of mass energy.
- Signal strenghts in 4 decay channels, and results on Higgs couplings to fermions, W & Z, are consistent with the SM.
- Despite the impressive progress on Higgs physics at LHC, the Tevatron has still some valuable information to provide (spin-parity results under preparation, targetting LHCP).

Backup Slides

history of Tevatron results

Data of 2008; up to 4.2 fb-1

Data of mid 2009; up to 5.4 fb

Time

Data of mid 2010; up to 5.9 fb-1

Data of mid 2011; up to 8.6 fb-1

Full data set; up to 10 fb-1

CDF and D0 Combinations: P-values

- p-value for background hypothesis provides information about the consistency with the observed data
- Local p-value distribution for background only expectation:
 - D0: 1.7 s.d. (@125 GeV)
 - CDF: 2.0 s.d. (@125 GeV)

Probing Higgs Boson Couplings

$$\sigma(gg \to H) = \sigma_{SM}(gg \to H)(0.95\kappa_f^2 + 0.05\kappa_f\kappa_V)$$

$$\sigma(VH, VBF) = \sigma_{SM}(VH, VBF)\kappa_V^2$$

$$\Gamma(H \to VV) = \Gamma(H \to VV)_{SM} \kappa_V^2; (V = W, Z)$$

$$\Gamma(H \to ff) = \Gamma(H \to ff)_{SM} \kappa_f^2$$

$$\Gamma(H o gg) = \Gamma(H o gg)_{SM}(0.95\kappa_f^2 + 0.05\kappa_f\kappa_V)$$

$$\Gamma(H \to \gamma \gamma) = \Gamma(H \to \gamma \gamma)_{SM} |\alpha \kappa_V + \beta \kappa_f|^2$$

$$\alpha$$
=1.28; β =-0.21; from Spira et al. arXiv:hep-ph/9504378 => H \rightarrow γγ from destructive interference between the two contributions

If any of the couplings is negative,
 interference becomes constructive
 => Larger rate of the H →γγ

$$\mathcal{BR}(H \to XX) = \frac{\Gamma(H \to XX)}{\Gamma_{TOT}}$$

Summary on couplings

- Couplings to fermions: $\kappa_f = -2.64^{+1.59}_{-1.30}$
- Couplings to bosons:

$$\kappa_W = -1.27^{+0.46}_{-0.29}$$
; second interval 1.04< $\kappa_W < 1.51$
 $\kappa_Z = \pm 1.05^{+0.45}_{-0.55}$

- if varied together: $(\kappa_w, \kappa_z) = (1.25, \pm 0.90)$
- For custodial symmetry:

$$\bigoplus_{WZ} \equiv 0.68^{+0.21}_{-0.41} \rightarrow \lambda_{WZ} = 1.24^{+2.34}_{-0.42}$$

If custodial symmetry is preserved:

$$(\kappa_V, \kappa_f) = (1.05, -2.40)$$
 and $(\kappa_V, \kappa_f) = (1.05, 2.30)$