Quarkonia and heavy flavours at forward rapidity in Pb-Pb collisions at ALICE

Massimiliano Marchisone on behalf of the ALICE Collaboration

Université Blaise Pascal de Clermont-Ferrand et LPC Università di Torino e INFN

> LHC France 2013 Annecy, 02-06/04/2013

Outline

- Physics motivations
- 2 The ALICE experiment
- Quarkonia
- Muons from heavy-flavour decays
- Conclusions

Physics motivations

Heavy quarks in heavy ion collisions

- Ultrarelativistic heavy ion collisions are the unique tool to study in laboratory the Quark Gluon Plasma, a deconfined partonic phase.
- Heavy quarks (c and b) are sensitive probes of the properties of the QGP and are abundantly produced at the LHC.
- Because of their large masses, they are created in hard scattering processes during the early stage of the collision and subsequently interact with the hot and dense medium.

Heavy quarks in heavy ion collisions

- Ultrarelativistic heavy ion collisions are the unique tool to study in laboratory the Quark Gluon Plasma, a deconfined partonic phase.
- Heavy quarks (c and b) are sensitive probes of the properties of the QGP and are abundantly produced at the LHC.
- Because of their large masses, they are created in hard scattering processes during the early stage of the collision and subsequently interact with the hot and dense medium.

Quarkonia in AA collisions

- Quarkonia play a key role in the study of QGP because:
 - they are created in the early stage of the collision,
 - their production is expected to be modified by the plasma.
 - having different radii (→ different binding energies) a sequential suppression is expected as a function of the energy density (T. Matsui and H. Satz, Phys. Lett. (1986)).

Quarkonia in AA collisions

- Two different scenarios at LHC are possible:
 - new energy regime → higher suppression with respect to RHIC,
 - higher $c\bar{c}$ recombination probability \rightarrow regeneration effects (P.Braun-Munzinger et al., Phys. Lett. B 490 (2000); R.L.Thews et al., Phys. Rev. C 63 (2001) 054905).

Heavy flavours in AA collisions

Physics motivations

- As for quarkonia, heavy quarks are produced in the early stage of the collision and can probe the medium evolution.
- The parton energy loss in the medium is due to elastic collisions and gluon radiation.
- The gluon radiation depends on:
 - medium properties and size,
 - parton colour charge (Casimir factor),
 - parton mass (dead cone effect)
 (Y.L. Dokshitzer et al., Phys.
 Lett. B 519 (2001)).
- One would expect: $\Delta E_{u,d} > \Delta E_c > \Delta E_b$.

Heavy flavours in AA collisions

- As for quarkonia, heavy quarks are produced in the early stage of the collision and can probe the medium evolution.
- The parton energy loss in the medium is due to elastic collisions and gluon radiation.
- The gluon radiation depends on:
 - medium properties and size,
 - parton colour charge (Casimir factor),
 - parton mass (dead cone effect) (Y.L. Dokshitzer et al., Phys. Lett. B 519 (2001)).

Muons from heavy-flavour decays

Heavy flavours in AA collisions

- As for quarkonia, heavy quarks are produced in the early stage of the collision and can probe the medium evolution.
- The parton energy loss in the medium is due to elastic collisions and gluon radiation.
- The gluon radiation depends on:
 - medium properties and size,
 - parton colour charge (Casimir factor),
 - parton mass (dead cone effect) (Y.L. Dokshitzer et al., Phys. Lett. B 519 (2001)).
- One would expect: $\Delta E_{u,d} > \Delta E_c > \Delta E_b$.

Muons from heavy-flavour decays

The ALICE experiment

• The nuclear modification factor (R_{AA}) is the observable that allows to estimate the relative production of quarkonia or muons from HF in Pb-Pb collisions with respect to pp.

$$R_{
m AA} = rac{1}{\langle T_{
m AA}
angle} \cdot rac{Y_{
m AA}}{\sigma_{
m pp}}$$

- Where
 - Y_{AA} = yield in AA collisions (i.e. dN_{AA}/dy , $dN_{AA}/dp_{T}...$),
 - $\sigma_{\rm pp}$ = corresponding cross section in pp collisions at the same energy,
 - T_{AA} = nuclear overlap function (from Glauber model).

The ALICE experiment

A Large Ion Collider Experiment

- Muon spectrometer:
 - $-4 < \eta < -2.5$,
 - quarkonia and heavy flavours reconstructed in the (di)muon channel,
 - muon trigger based on transverse momentum.

A Large Ion Collider Experiment

- Muon spectrometer:
 - $-4 < \eta < -2.5$,
 - quarkonia and heavy flavours reconstructed in the (di)muon channel,
 - muon trigger based on transverse momentum.
- ITS (mainly SPD):
 - MB trigger,
 - interaction vertex reconstruction

A Large Ion Collider Experiment

- Muon spectrometer:
 - $-4 < \eta < -2.5$,
 - quarkonia and heavy flavours reconstructed in the (di)muon channel,
 - muon trigger based on transverse momentum.
- ITS (mainly SPD):
 - MB trigger,
 - interaction vertex reconstruction
- VZERO:
 - MB trigger,
 - centrality determination based on Glauber model.

Quarkonia

Experimental data set and pp reference

- J/ ψ signal extraction in Pb–Pb collisions at $\sqrt{s_{\mathrm{NN}}}=2.76$ TeV:
 - 17.7×10⁷ muon triggered events (\sim 70 μ b⁻¹, $p_{\rm T}^{\mu} > 1$ GeV/c),
 - signal fitted with an extended Crystal Ball function and background subtracted with the event mixing technique,
 - $A \times \varepsilon$ values obtained by embedding MC J/ ψ into real events.
- pp reference at $\sqrt{s}=2.76$ TeV
 - 8.8×10^6 muon triggered events ($\sim 19.9 \ \mu b^{-1}$, $p_T^{\mu} > 0.5 \ GeV/c$)
 - at forward rapidity NRQCD describes well the J/ψ differential cross section (ALICE Collaboration, Phys. Lett. B. 718 (2012) 295).

- J/ψ signal extraction in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV:
 - 17.7×10⁷ muon triggered events $(\sim 70 \ \mu b^{-1}, \ p_{\rm T}^{\mu} > 1 \ {\rm GeV/c}),$
 - signal fitted with an extended Crystal Ball function and background subtracted with the event mixing technique.
 - $A \times \varepsilon$ values obtained by embedding MC J/ ψ into real events.
- pp reference at $\sqrt{s} = 2.76$ TeV:
 - 8.8×10^6 muon triggered events $(\sim 19.9 \ \mu b^{-1}, \ p_{\rm T}^{\mu} > 0.5 \ {\rm GeV/c}),$
 - at forward rapidity NRQCD describes well the J/ψ differential cross section (ALICE Collaboration, Phys. Lett. B, 718 (2012) 295).

Muons from heavy-flavour decays

See Lizardo's talk for more details.

p, (GeV/c)

$\overline{\mathsf{J}/\psi}\ R_{\mathrm{AA}}$ vs centrality

• No centrality dependence for $N_{\mathrm{part}} > 70$.

J/ψ $R_{\rm AA}$ vs centrality

• $R_{\Lambda\Lambda}^{\rm ALICE} \sim 3 \times R_{\Lambda\Lambda}^{\rm PHENIX}$ for $N_{\rm part} > 200$.

$J/\psi R_{AA}$ vs centrality

- Comparison with different theoretical predictions:
 - Statistical Hadronization Model: prediction for two values of $d\sigma_{c\bar{c}}/dy$,
 - Transport Models: different rates of J/ ψ dissociation and regeneration; in both cases more than 50% of measured yield in the most central collisions is due to J/ ψ regeneration,
 - green band: includes shadowing, comovers and recombination.

$\overline{\mathsf{J}/\psi} \; R_{\mathrm{AA}} \; \mathsf{vs} \; \mathsf{y}$

- Data at midrapidity obtained in the dielectron decay channel.
- $R_{\rm AA}$ decreases by 40% from y=2.5 to y=4.
- J/ ψ less suppressed if shadowing calculations are considered. Cold nuclear matter effects need to be quantified (possible with pA collisions).

J/ψ $R_{ m AA}$ vs $p_{ m T}$

- \bullet Stronger suppression at high- $p_{\rm T}$ (mostly for central collisions).
- Good agreement with Transport Models for most central collisions.
- Discrepancy at low- p_T for peripheral collisions.
- Indication of regeneration at low- $p_{\rm T}$ (at least for central collisions).

$\overline{{\sf J}/\psi}\,\overline{{\sf R}_{ m AA}}$ vs $p_{ m T}$

- \bullet Stronger suppression at high- $p_{\rm T}$ (mostly for central collisions).
- Good agreement with Transport Models for most central collisions.
- ullet Discrepancy at low- p_{T} for peripheral collisions.
- Indication of regeneration at low- p_{Γ} (at least for central collisions).

Experimental data set and pp reference

- Signal extraction in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV:
 - 16.6×10^6 MB events ($\sim 2.7 \ \mu b^{-1}$),
 - background $(\mu \leftarrow \pi, K)$ subtracted extrapolating the distribution from midrapidity to forward rapidity (assuming the same suppression).

- Signal extraction in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV:
 - 16.6×10^6 MB events ($\sim 2.7 \ \mu b^{-1}$),
 - background $(\mu \leftarrow \pi, K)$ subtracted extrapolating the distribution from midrapidity to forward rapidity (assuming the same suppression).
- pp reference at $\sqrt{s} = 2.76$ TeV:
 - $d\sigma/dp_T$ well described within uncertainties by FONLL pQCD calculations (ALICE Collaboration, PRL 109, 112301 (2012)),
 - see Lizardo's talk for more details

$R_{ m AA}$ vs centrality

- The $R_{\rm AA}$ of muons from heavy-flavour decays at forward rapidity in high- $p_{\rm T}$ range (> 6 GeV/c) exhibits a strong suppression with increasing centrality, up to a factor $3\div4$ in the most central collisions.
- In this p_T range results are dominated by beauty contribution, according to FONLL calculations in pp collisions.

$R_{ m AA}$ vs centrality

- Prompt D mesons (|y| < 0.5), non-prompt J/ψ from beauty decays (|y| < 1.2, by CMS) and muons from HF (2.5 < y < 4) show a similar centrality trend at high- p_T .
- Hints for $R_{\rm AA}^{u,d} < R_{\rm AA}^c < R_{\rm AA}^b$. Anyway, due to the large uncertainties and the different y and $p_{\rm T}$ regions it is difficult to make a clear conclusion.

$R_{\rm AA}$ vs $p_{ m T}$

- A larger suppression is observed in central collisions as compared to peripheral ones, with no significant $p_{\rm T}$ dependence within uncertainties (4 $< p_T < 10 \text{ GeV/c}$).

- A larger suppression is observed in central collisions as compared to peripheral ones, with no significant $p_{\rm T}$ dependence within uncertainties (4 < $p_{\rm T}$ < 10 GeV/c).
- Similar $R_{\rm AA}$ for electrons from HF and for D mesons in central collisions ($p_{\rm T}^e \sim 0.5 \cdot p_{\rm T}^D$ at high p_T), though in a different kinematic region.

$R_{ m AA}$ vs $p_{ m T}$

- Models implementing radiative energy loss (BDMPS-ASW) and radiation + dissociation (Vitev) reproduce well the trend.
- The small contribution of shadowing alone (cold nuclear matter effect) cannot explain the suppression. To be checked in 2013 p-Pb data (analysis in progress).

Conclusions

• J/ $\psi \rightarrow \mu \mu$:

- flat $R_{\rm AA}$ centrality trend for $N_{\rm part} > 70$ at forward rapidity,
- J/ψ at the LHC is less suppressed than at RHIC (in central collisions),
- bigger suppression at forward rapidity than at midrapidity,
- ullet larger suppression for high- $p_{
 m T}$ than for low- $p_{
 m T}$ J/ ψ ,
- ullet comparisons to models point to regeneration effects (more evident in central collisions for low- $p_{
 m T}$ particles).
- Muons trom heavy-tlavour decays
 - strong suppression increasing with centrality (up to a factor of 3÷4)
 - no significant dependence on $p_{\rm T}$ (for $p_{\rm T} > 4$ GeV/c),
 - D mesons and non-prompt J/ψ at midrapidity have a similar trend vs centrality and vs ρ_T (hierarchy in suppression?),
 - data well reproduced by models with radiative energy loss.
- p-Pb collisions crucial to quantify the cold nuclear matter effects

Conclusions

Conclusions

- J/ $\psi \rightarrow \mu \mu$:
 - \bullet flat $R_{\rm AA}$ centrality trend for $N_{\rm part} > 70$ at forward rapidity,
 - J/ ψ at the LHC is less suppressed than at RHIC (in central collisions),
 - bigger suppression at forward rapidity than at midrapidity,
 - \bullet larger suppression for high- $p_{\rm T}$ than for low- $p_{\rm T}$ J/ ψ ,
 - ullet comparisons to models point to regeneration effects (more evident in central collisions for low- $p_{
 m T}$ particles).
- Muons from heavy-flavour decays:
 - strong suppression increasing with centrality (up to a factor of $3 \div 4$).
 - no significant dependence on $p_{\rm T}$ (for $p_{\rm T} > 4$ GeV/c),
 - D mesons and non-prompt J/ψ at midrapidity have a similar trend vs centrality and vs ρ_T (hierarchy in suppression?),
 - data well reproduced by models with radiative energy loss.
- p-Pb collisions crucial to quantify the cold nuclear matter effects.

Conclusions

- $J/\psi \rightarrow \mu\mu$:
 - flat $R_{
 m AA}$ centrality trend for $N_{
 m part} > 70$ at forward rapidity,
 - J/ ψ at the LHC is less suppressed than at RHIC (in central collisions),
 - bigger suppression at forward rapidity than at midrapidity,
 - ullet larger suppression for high- $p_{
 m T}$ than for low- $p_{
 m T}$ J/ ψ ,
 - ullet comparisons to models point to regeneration effects (more evident in central collisions for low- $p_{
 m T}$ particles).
- Muons from heavy-flavour decays:
 - strong suppression increasing with centrality (up to a factor of $3 \div 4$).
 - no significant dependence on $p_{\rm T}$ (for $p_{\rm T} > 4$ GeV/c),
 - D mesons and non-prompt J/ψ at midrapidity have a similar trend vs centrality and vs p_T (hierarchy in suppression?),
 - data well reproduced by models with radiative energy loss.
- p-Pb collisions crucial to quantify the cold nuclear matter effects.

Conclusions