
Top pair cross-section in dilepton channel with CMS

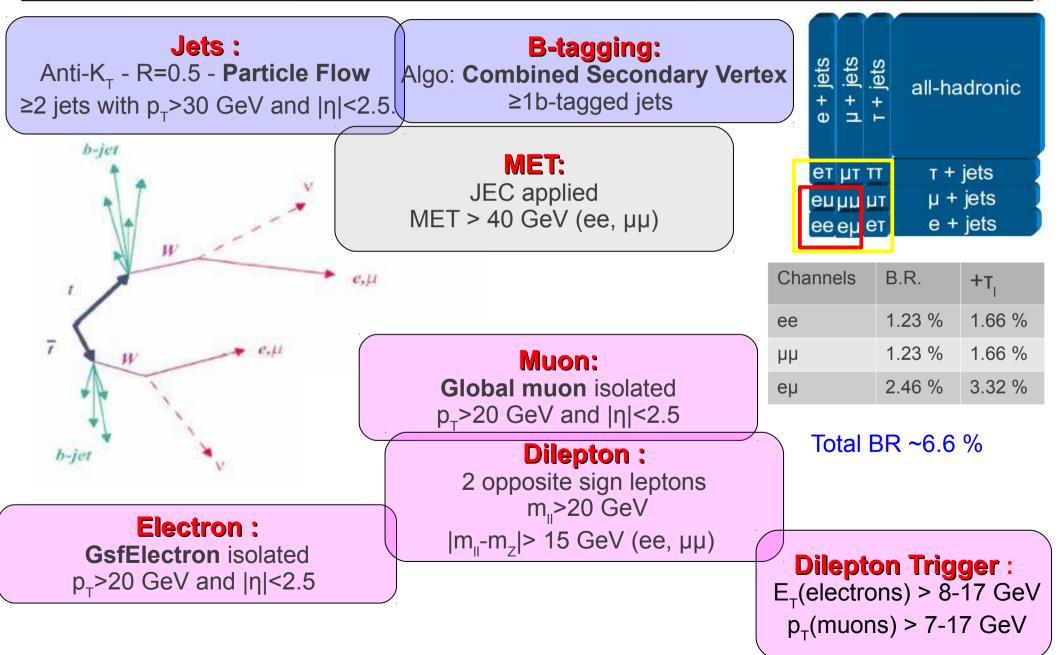
Outline

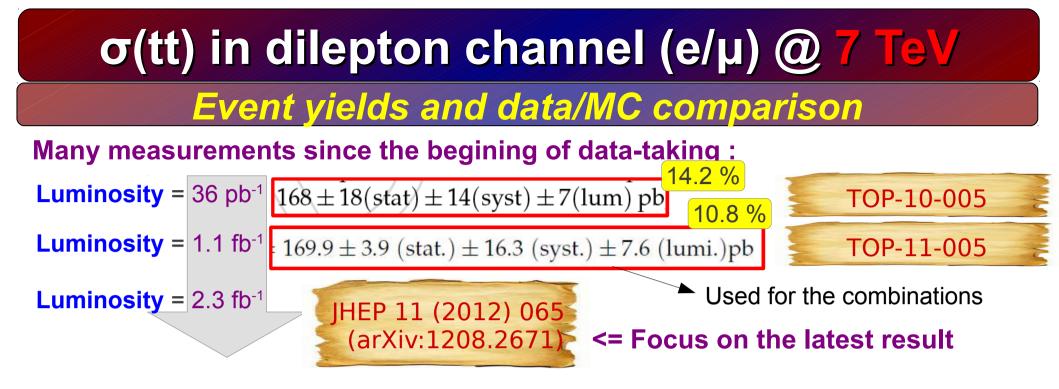
@ 1.1 fb⁻¹

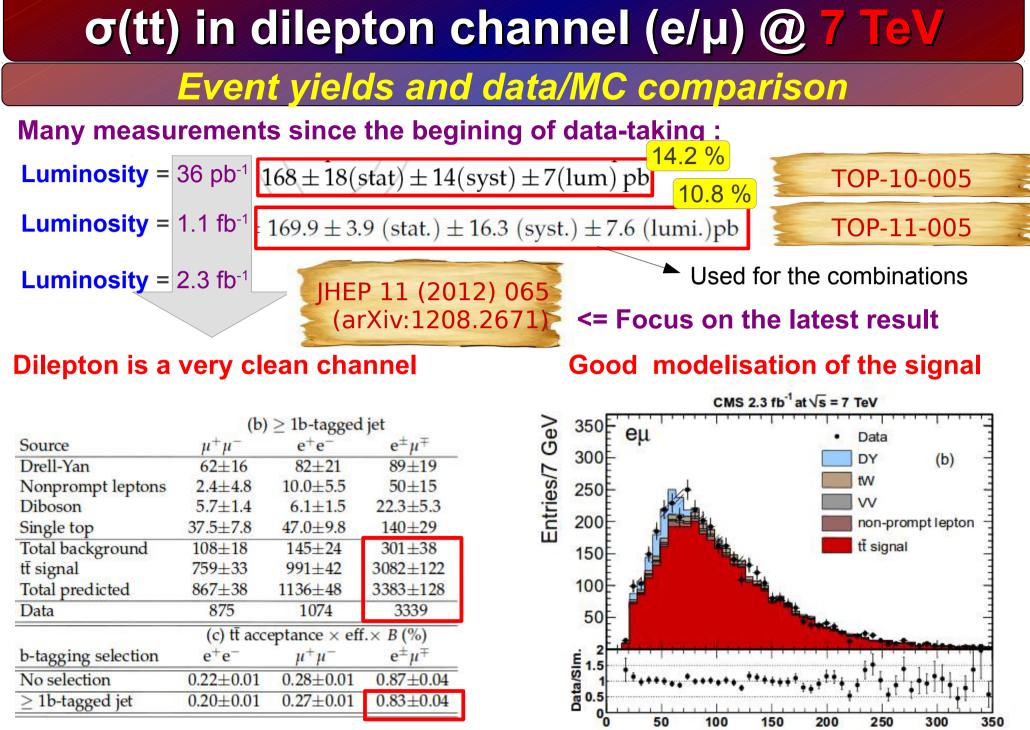
@ 2.2 fb⁻¹

7 TeV Analysis

- ee-eµ-µµ channels @ 2.3 fb⁻¹ >
- µT channel
- µT-et channels
- CMS combination @ 0.8-1.1 fb⁻¹
- LHC combination @ 0.7-1.1 fb⁻¹

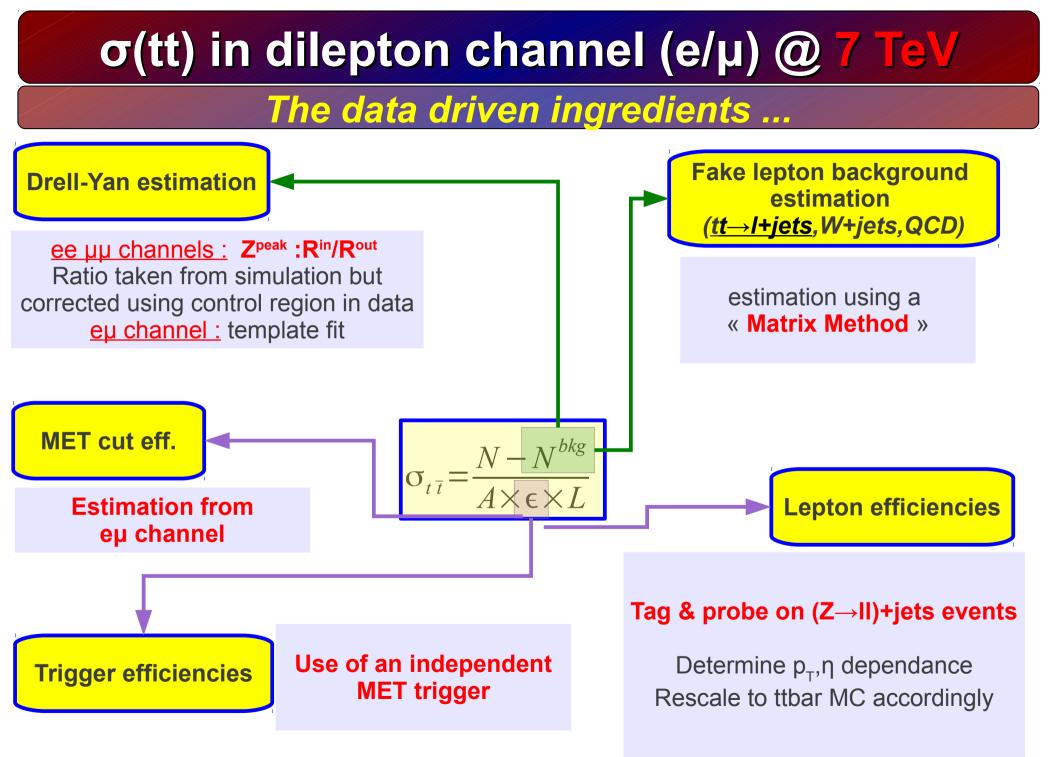



8 TeV Analysis


- ee-eµ-µµ channels @ 2.3
- CMS combination

dilepton channels : e/µ

Event Selection



eµ channel :eff = 33 % - purity = 91 % !

M. [GeV] 5

Cut & count method (eµ)

Source	Uncertainty on $\sigma_{t\bar{t}}(pb)$	TDR expectations (14 TeV,10fb ⁻¹)
Diboson	0.4	(14 160,1010)
Single top	2.3	
Drell-Yan	1.0	
Non-W/Z leptons	0.6	
Lepton efficiencies	1.7	
Lepton energy scale	0.5	
Jet energy scale	2.8	6.1
Jet energy resolution	0.5	
E _T efficiency	1.9	
b-tagging	1.1	5.8
Pileup	0.7	
Scale of QCD (μ)	1.0	
Matching partons to showers	1.0	
W branching fraction	2.7	
Total systematic	5.6	11.7
Integrated luminosity	3.6	4.8
Statistical	2.6	

 $\frac{Conservative}{are translated in reasonnable}$ $\sigma(tt) uncertainties (thanks to the purity)$

Cut & count method (eµ)

Source	Uncertainty on $\sigma_{t\bar{t}}(pb)$	TDR expectations (14 TeV,10fb ⁻¹)
Diboson	0.4	(14 160,1010)
Single top	2.3	
Drell-Yan	1.0	
Non-W/Z leptons	0.6	
Lepton efficiencies	1.7	
Lepton energy scale	0.5	
Jet energy scale	2.8	6.1
Jet energy resolution	0.5	
E _T efficiency	1.9	
b-tagging	1.1	5.8
Pileup	0.7	
Scale of QCD (μ)	1.0	
Matching partons to showers	1.0	
W branching fraction	2.7	
Total systematic	5.6	11.7
Integrated luminosity	3.6	4.8
Statistical	2.6	

 $\frac{Conservative}{are translated in reasonnable} \\ \sigma(tt) uncertainties (thanks to the purity)$

Thanks to object groups effort, JES and b-tagging uncert. are below the TDR expectations !

Cut & count method (eµ)

Source	Uncertainty on $\sigma_{t\bar{t}}(pb)$	TDR ex
Diboson	0.4	(14 T
Single top	2.3	
Drell-Yan	1.0	
Non-W/Z leptons	0.6	
Lepton efficiencies	1.7	
Lepton energy scale	0.5	
Jet energy scale	2.8	6.1
Jet energy resolution	0.5	
E _T efficiency	1.9	
b-tagging	1.1	5.8
Pileup	0.7	
Scale of QCD (μ)	1.0	
Matching partons to showers	1.0	
W branching fraction	2.7	
Total systematic	5.6	11.7
Integrated luminosity	3.6	4.8
Statistical	2.6	

TDR expectations (14 TeV,10fb⁻¹) <u>Conservative</u> data-driven uncertainties are translated in reasonnable σ(tt) uncertainties (thanks to the purity)

> Thanks to object groups effort, JES and b-tagging uncert. are below the TDR expectations !

Main dominant uncertainties ie BR(W) & Iuminosity measurement, are irreducible

Cut & count method (eµ)

Source	Uncertainty on $\sigma_{t\bar{t}}(pb)$	TDR ex (14 Te
Diboson	0.4	(14 16
Single top	2.3	
Drell-Yan	1.0	
Non-W/Z leptons	0.6	
Lepton efficiencies	1.7	
Lepton energy scale	0.5	
Jet energy scale	2.8	6.1
Jet energy resolution	0.5	
E _T efficiency	1.9	
b-tagging	1.1	5.8
Pileup	0.7	
Scale of QCD (μ)	1.0	
Matching partons to showers	1.0	
W branching fraction	2.7	
Total systematic	5.6	11.7
Integrated luminosity	3.6	4.8
Statistical	2.6	

TDR expectations (14 TeV,10fb⁻¹) <u>Conservative</u> data-driven uncertainties are translated in reasonnable σ(tt) uncertainties (thanks to the purity)

> Thanks to object groups effort, JES and b-tagging uncert. are below the TDR expectations !

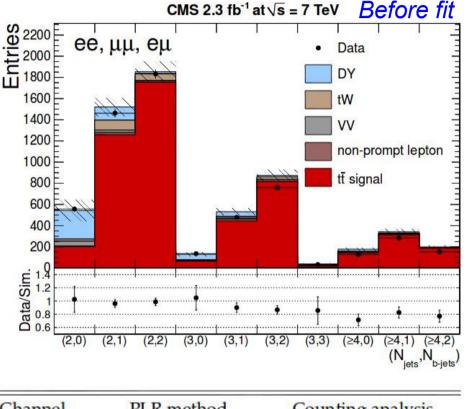
Main dominant uncertainties *ie* **BR(W) & luminosity** measurement, are irreducible

Since 2011, the total uncert. Is dominated by **systematic** uncert.

σ (tt) in dilepton channel (e/µ) @ 7 TeV

Into the precision area : 4.2 % uncertainty

Cross section is measured from a profile likelihood ratio


using the N_{jets} vs N_{bjets} distribution

2 extraction methods :

- Cut & Count (cross-check)
 - Combination with a BLUE method

Profile Likelihood Ratio method

- Combination with a treatment of nuisance parameters correlation btw channels
- gain with PLR : 12 % on systematics
- → gain with comb. (rel. eµ) : 19 % on statistics
- Combination driven by the eµ channel (less backgrounds, no MET selection)

Channel	PLR method	Counting analysis
ee	$168.0 \pm 6.6^{+7.6}_{-7.0} \pm 3.7$	$165.9 \pm 6.4 \pm 7.0 \pm 3.6$
μμ	$156.3 \pm 5.6^{+7.7}_{-6.6} \pm 3.5$	$153.8 \pm 5.4 \pm 6.6 \pm 3.4$
eµ	$161.9 \pm 3.1^{+5.8}_{-5.4} \pm 3.6$	$161.6 \pm 3.1 \pm 5.6 \pm 3.6$
Combined	$161.9 \pm 2.5^{+5.1}_{-5.0} \pm 3.6$	$161.0 \pm 2.6 \pm 5.6 \pm 3.6$
	4.2 %	

good agreement btw. the 2 methods 11

σ (tt) in dilepton channel (e/µ) @ 7 TeV

Into the precision area : 4.2 % uncertainty

μµ

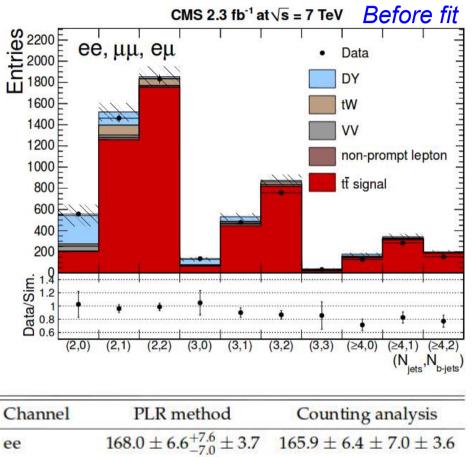
eu

Cross section is measured from a profile likelihood ratio

using the N_{jets} vs N_{bjets} distribution

2 extraction methods :

- Cut & Count (cross-check)
 - Combination with a BLUE method


Profile Likelihood Ratio method

- Combination with a treatment of nuisance parameters correlation btw channels
- gain with PLR : 12 % on systematics
- → gain with comb. (rel. eµ) : 19 % on statistics
- Combination driven by the eµ channel (less backgrounds, no MET selection)

Top mass dependance :

 $\sigma_{t\bar{t}}/\sigma_{t\bar{t}}(m_t = 172.5) = 1.00 - 0.008 \times (m_t - 172.5) - 0.000137 \times (m_t - 172.5)^2.$

Top mass uncertainty at WA : 1.4 pb (0.9%)

good agreement btw. the 2 methods 12

Combined $161.9 \pm 2.5^{+5.1}_{-5.0} \pm 3.6$ $161.0 \pm 2.6 \pm 5.6 \pm 3.6$

4.2 %

 $161.9 \pm 3.1^{+5.8}_{-5.4} \pm 3.6$ $161.6 \pm 3.1 \pm 5.6 \pm 3.6$

 $153.8 \pm 5.4 \pm 6.6 \pm 3.4$

 $156.3 \pm 5.6^{+7.7}_{-6.6} \pm 3.5$

σ (tt) in dilepton channel ($\mu \tau_h$) @ 7 TeV

Looking for an hadronically decaying au

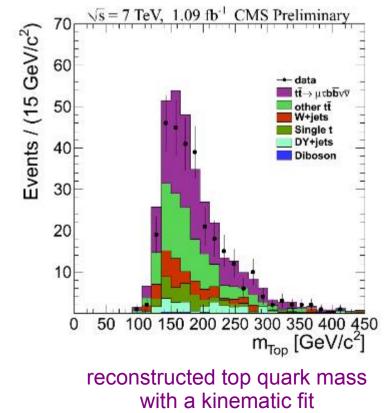
Luminosity = 1.09 fb⁻¹

Event Selection

- Single-muon trigger
- 1 isolated muon $p_T > 20 \text{ GeV}$
- 1 tau with p_τ > 20 GeV
- Opposite sign requirement
- \geq 2 jets with $p_T > 20 \text{ GeV}$
- ≥1 b-tagged jet
- MET > 40 GeV

Measurement :

 $\sigma_{
m t\bar{t}} = 148.7 \pm 23.6 (
m stat.) \pm 26.0 (
m syst.) \pm 8.9 (
m lumi.) \
m pb$

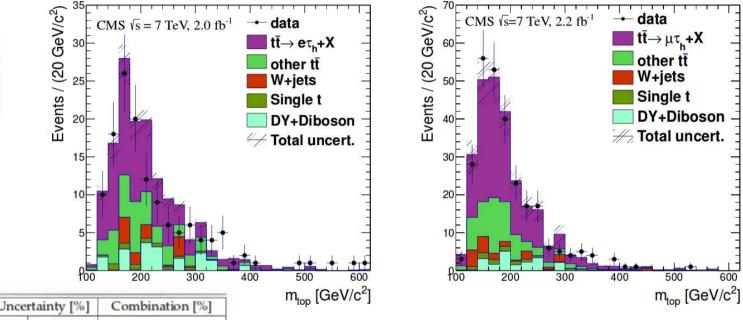

	Uncertainties [%]
τ fake background	13.0
τ jet identification	7.3
b-jet tagging & jet→b mis-id	5.5
jet energy scale, jet energy resolution, E_T^{miss}	4.4
theoretical uncertainty on signal efficiency	4.0
pileup modeling	3.1
lepton selection	2.1
cross-section of MC backgrounds	1.6
luminosity	6.0

Data Driven estimation :

25.3 %

Measurement of jets faking τ probability w(η , p_{τ}) using with high- p_{τ} jet trigger

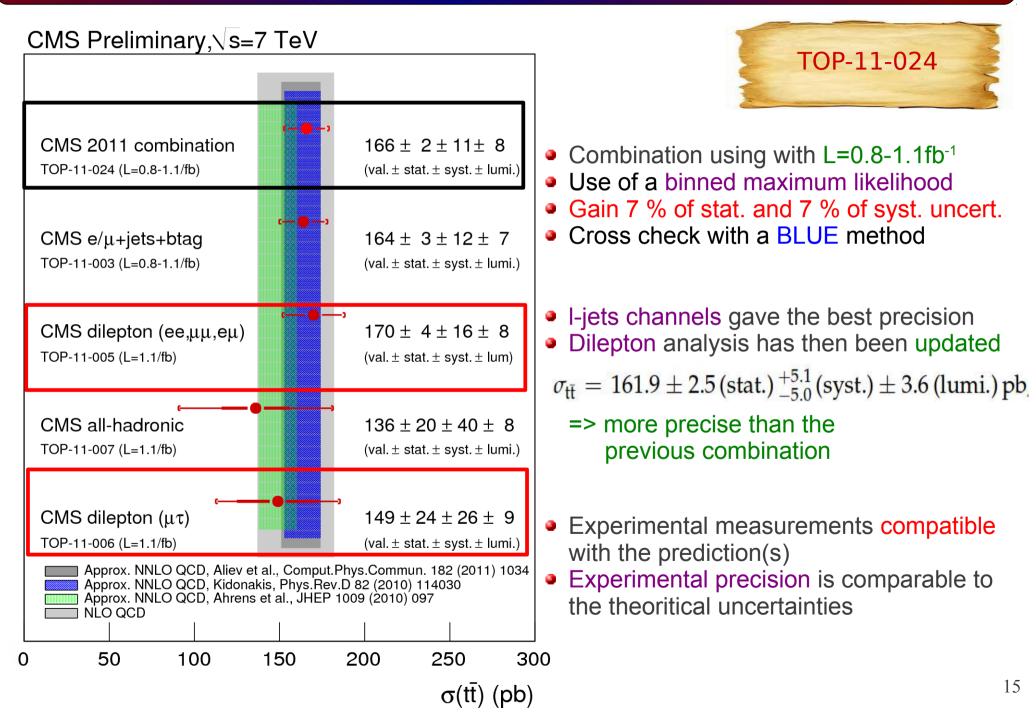
Statistical procedure : cut & count



TOP-11-006

σ (tt) in dilepton channel (e/μ,τ) @ 7 TeV Update with eτ channel and higher luminosity

Luminosity = 2.2 fb⁻¹


arXiv:1203.6810

Source	Uncertainty [%]		Combination [%]
	eth	$\mu \tau_{\rm h}$	
τ misidentification background	12.6	9.8	10.8
τ jet identification	6.4	6.3	6.3
b-jet tagging, misidentification	5.3	5.3	5.3
jet energy scale, jet energy resolution, E ^{miss}	5.1	6.2	5.8
theoretical uncertainty on signal efficiency	4.0	4.0	4.0
pile-up modelling	2.3	2.3	2.3
electron selection	3.1	0	1.1
muon selection	0	2.0	1.3
cross section of MC backgrounds	1.6	1.4	1.5
luminosity	2.2	2.2	2.2
weight	0.38	0.62	$\chi^2 / N_{dof} = 2.381/1$ (p-value = 0.198)

	18.4 %
$\sigma_{t\bar{t}} = 143 \pm 14(\text{stat.}) \pm 22(\text{syst.}) \pm 3(\text{lur})$	ni.) pb

CMS combination @ 7 TeV

LHC combination @ 7 TeV

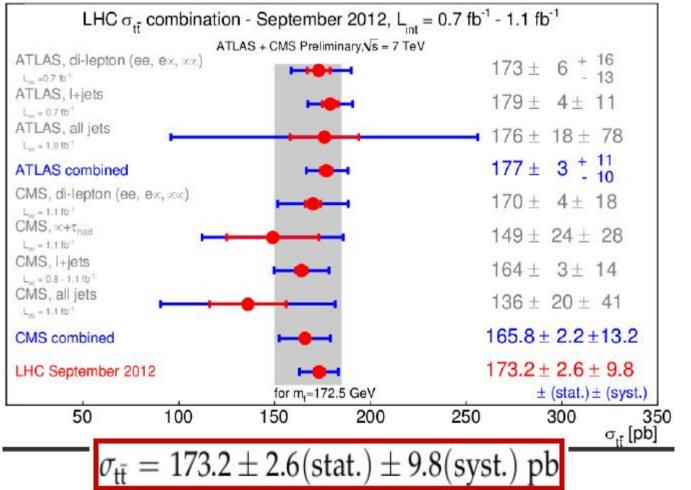
LHC combination from TOPLHCWG

Inputs : ATLAS (ATLAS-CONF-2012-00) and CMS (CMS PAS TOP-12-003) combinations

	ATLAS	CMS	Correlation	LHC combination
Cross-section	177.0	165.8		173.2
Uncertainty				
Statistical	3.7	2.2	0	2.6
JES	2.7	3.5	0	2.1
Detector model	5.3	8.8	0	4.6
Signal model				
Monte-Carlo	4.2	1.1	1	3.1
Parton shower	1.3	2.2	1	1.6
Radiation	0.8	4.1	1	1.9
PDF	1.9	4.1	1	2.6
Background from data	1.5	3.4	0	1.6
Background from MC	1.6	1.6	1	1.6
Method	2.4	n/e	1	1.6
W leptonic branching	1.0	1.0	1	1.0
Luminosity			//	× //
Bunch current	5.3	4.3	1	5.3
Detector effects	5.1	5.9	0	3.4
Total systematic	10.8	14.2		9.8
Total	11.4	14.4	15	10.2

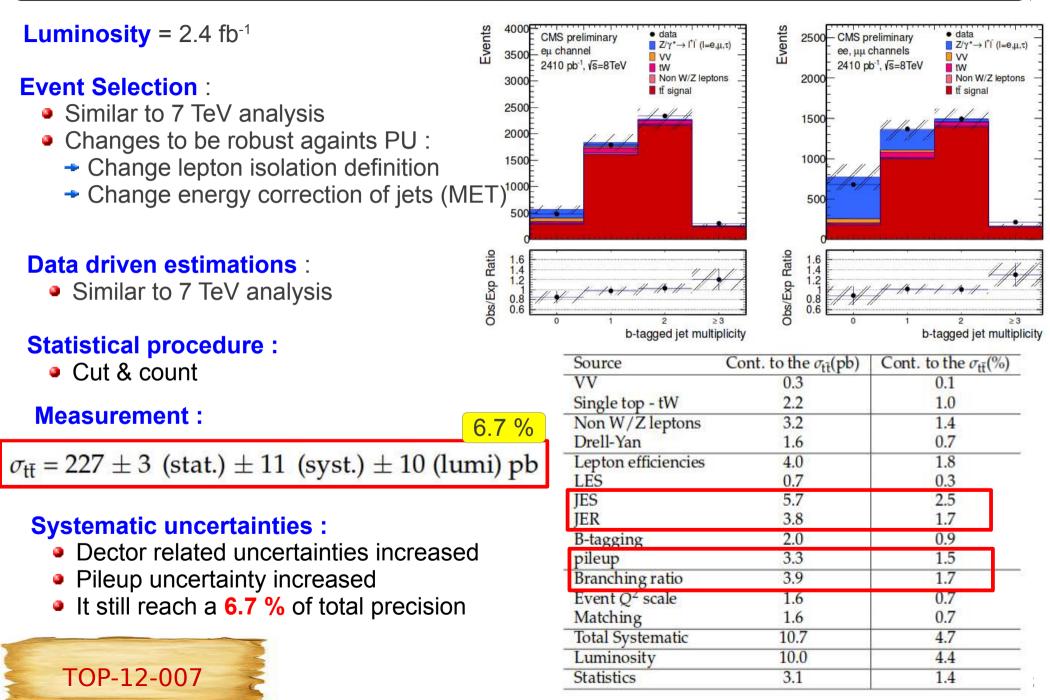
Assumption of the correlation tested

Luminosity partially

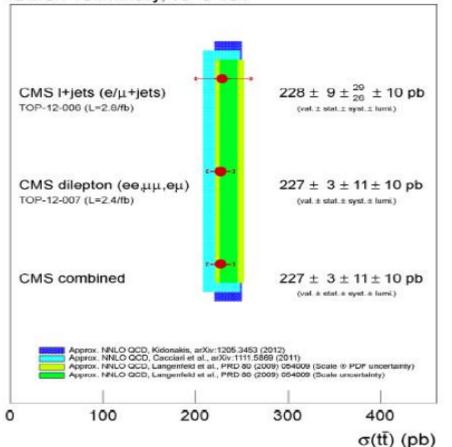

Treatment of the different uncertainties with their correlation

Total correlations between the measurements : 29%.

LHC combination @ 7 TeV

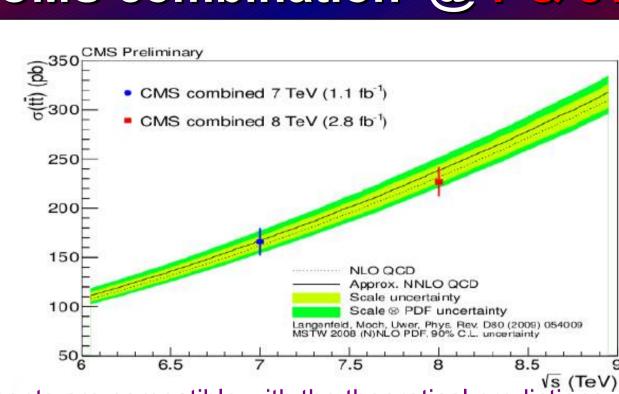

LHC combination from TOPLHCWG

Combined ttbar cross section uncertainty becomes 5.8% (around 10 pb) => gain about 10%.


Better results are expected with new measurements : more statistics, better lumi. systematic,...

σ (tt) in dilepton channel (e/µ) @ 8 TeV

CMS combination @ 8 TeV


CMS Preliminary, Vs=8 TeV

- Combination of the CMS 8 TeV measurements using a BLUE method
- Combination dominated by the dilepton channel
- Combined cross section measurement :

 $_{
m f}$ = 227 \pm 3 (stat.) \pm 11 (syst.) \pm 10 (lumi) pb

CMS combination @ 7 & 8TeV

Measurements are compatible with the theoretical predictions

- Ratio of the 8TeV (combination) and 7TeV cross sections (dilepton at 2.3 pb⁻¹)
 - Lot of systematic uncertainties cancel out
 - Ratio is found to be 1.41±0.10
- Dilepton channel is very pure (>90%) and allows high precision measurements
- The CMS dilepton analysis @ 7 TeV reached a very high precision: 7 pb (4.2%)
 => most precise top pair cross section measurement
- Despite the high multiplicity of pileup events, the CMS dilepton analysis @ 8 TeV reached a good precision: 15 pb (6.7%)