NEW BOSON SPIN AND PARITY MEASUREMENTS AT ATLAS

Camilla Maiani

LHC France 04.04.2013

INTRODUCTION AND OUTLINE

why do we measure the spin-CP?

- is the newly discovered particle a SM Higgs boson?
 - * significance, mass and couplings seem to confirm this **up to now**
 - * direct measurement of its spin-parity allows to experimentally test the new particle nature

talk outline

- how can we measure the Higgs boson spin-parity?
 - ★ observables definitions
 - ★ general method and assumptions
- measurements in the new particle bosonic decay channels @ATLAS using the full 2011+2012/2012 data samples
 - * $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ [L ~4.6 fb⁻¹@7TeV + 20.3 fb⁻¹@8TeV]
 - **★** H→γγ
 - \star H→WW(\star)→eV_eμV_μ
- [L ~20.3 fb⁻¹@8TeV]

conclusions

OBSERVABLES AND SEPARATION POWER

Theoretical predictions: final state observables \rightarrow J^P boson

Experimentally this means we study

 m_1 , m_2 , $\cos\theta^*$, ϕ_1 , $\cos\theta_1$, $\cos\theta_2$, ϕ to say something on J^{PC}

OBSERVABLES AND SEPARATION POWER

Theoretical predictions: final state observables \rightarrow J^P boson

Experimentally this means we study

 m_1 , m_2 , $\cos\theta^*$, ϕ_1 , $\cos\theta_1$, $\cos\theta_2$, ϕ to say something on J^{PC}

Separation power is altered by background presence and selection effects

ANALYSES METHOD OUTLINE

- be define a 1D discriminant which allows to separate between spin-parity hypotheses
 - ★ using masses, angles
 - * taking into account the detector/selection effects
- (always) test one hypothesis (H₀) against another one (H₁)
 - * assuming that the spin-parity is O⁺
 - * testing against non-SM hypotheses: 0, 1, 2m[±]
 - * spin-2: variating ggF/qq production fraction
- using log-likelihood ratio to extract separations:

test for generic spin-2 impossible→graviton-like tensor with minimal couplings model

$$q = \log \frac{\mathcal{L}(H_0)}{\mathcal{L}(H_1)} \quad \text{from μ and ϵ:} \\ \underset{\epsilon=0 \ \to \ L(H_0)}{\text{$\epsilon=0$}} \quad \underset{\epsilon=1 \ \to \ L(H_1)}{\text{$\epsilon=0$}}$$

- ★ generating pseudo-experiments \rightarrow q_{exp} distribution
 - → extracting p-values
 - \rightarrow 1-CL_S(H₁) = 1- p(H₁)/(1-p(H₀))

MEASUREMENT OVERVIEW IN $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ Decay

- > very clean channel, full decay kinematic measured
- ▶ applying main $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ analysis selection
 - * dividing the mass interval in a **signal** and a **background** region to gain in sensitivity [121, 127] GeV [115,121] U [127, 130] GeV
- discriminant definition: two independent methods are used
 - **★ BDT approach:** multivariate Boosted Decision Tree trained on pairs of different spin-parity MC signal samples
 - * MELA approach: Bayes Likelihood Ratio multivariate discriminant from matrix element description of the decay
 - → using full theoretical description of signal final state
 - → includes corrections for detector/selection effects: inefficiencies, ZZ mis-pairing [extracted from fully simulated JHU MC]
- main systematic uncertainties
 - ★ reconstruction: electron ES, mis-pairing fraction
 - ★ signal/background modelling: MC/control regions statistics, MC cross-sections
 - ★ mass regions migration

Bolognesi et al. http://arxiv.org/pdf/1208.4018v1.pdf

JP-MELA DISCRIMINANT SHAPE

★ JP-**MELA discriminant** defined as:

$$J^{P}\text{-MELA} = \frac{P(H_0)}{P(H_0) + P(H_1)}$$

$$H_i = 0^{\pm}, 1^{\pm}, 2^{\pm}_m$$

 $p(H_i) \rightarrow$ probability density function of H_i hypothesis including detector/selection effects

[P = P(m_{4ℓ}, m₁, m₂, cos θ *, ϕ ₁, cos θ ₂, ϕ)]

* expected distributions computed using JHU MC (signal, ZZ background) and data (reducible background)

SEPARATIONS IN $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$

- →results from both methods in good agreement
- → excluding 0⁻, 1⁺, 1⁻ at > 95% CL
- → data prefers the o+ hypothesis

STUDY OF SPIN-2 ADMIXTURES

- * for spin-2: gluon-gluon fusion, $q\overline{q}$ production mechanisms or an admixture of the two are allowed
- * testing different spin-2 production mechanisms, $f_{q\bar{q}} = 0$, 25, 50, 75, 100%

expected distribution is FLAT \rightarrow no dependency from production mechanism variation observed on data: statistical effect, within 2σ

MEASUREMENT OVERVIEW IN H→YY DECAY

- \triangleright separating spin-o+ vs spin-2+ using $m_{\gamma\gamma}$ and $cos\theta*$
 - ★ in the spin-o case the Higgs decays isotropically in its frame
- applying main analysis selection
 - ★ additional selection on p_TY/m_{YY}
 - \rightarrow reduce m_{YY}/cos θ * correlations
- two independent analyses are used
 - * nominal: fit of m_{YY} and cosθ* in the signal region, assuming them uncorrelated [factorized pdfs]
 - → better separation
 - * alternative: performing fit of the full m_{YY} spectrum in bins of $|\cos \theta^*|$
 - → smaller systematic uncertainties

small S/B ratio, determination of background shape is crucial

Modelling of the Signal and Backgrounds

- ★ signal pdfs: from JHU MC
- * background mass pdf: from direct data fit (alternative: in ten bins of $|\cos \theta^*|$)
- **★** background |cosθ*| pdf: from mass sidebands

RESULTS IN THE H-YY DECAY

$$ggF$$
] $O^+ VS 2^+ [qq]$

$$p_0(o^-)=0.003$$

$$p_0(0^-)=0.025$$

$$p_0(0^+)=0.59$$

$$p_0(0^+)=0.80$$

$$CL_s = 99.3\%$$

$$CL_{s} = 88.0\%$$

MEASUREMENT OVERVIEW IN $H \rightarrow WW \rightarrow eV_e \mu V_{\mu}$ Decay

→ optimized for a o+ signal

- only using opposite flavour channel
 H→WW→eν_eμν_μ
 - ★ better S/B ratio
 - * most sensitive channel
- testing o+ vs 2+m
 - * separation power mainly from: $\Delta\Phi$ between the leptons, dilepton invariant mass, $E_T^{miss}sin(\Delta\Phi)$, dilepton p_T
 - * using a kinematic fit on **two different BDT** trained over o⁺ and 2⁺ JHU MC

 samples

MEASUREMENT RESULTS

- data show a better agreement with a spin-o+ hypothesis
- the **hypothesis 2**+ **is excluded** in favor of o+ with a CLs which varies between 99% for $f_{qq} = 100\%$ and 95% for $f_{qq} = 0\%$
- main systematic uncertainties
 - ★ objects reconstruction: JES, lepton ES, E_T^{miss}, ...
 - ★ signal/background (WW) theoretical uncertainties

CONCLUSIONS

- ▶ showed latest results on spin-parity of the new-found particle measured at ATLAS with the full 2011+2012/2012 data samples
- performed hypothesis testing in different decay channels using different analysis techniques
- we exclude with CL > 95% the following models:
 - **★** 0^{-} , 1^{+} , 1^{-} [H \rightarrow ZZ]
 - \star 2m⁺ [H \rightarrow YY, H \rightarrow WW]
- in all decay channels we observe that data favours a o+ spin-parity configuration

→ supporting SM Higgs hypothesis!

BACKUP SLIDES

HIGGS BOSON PRODUCTION AND DECAYS

ANGLES DEFINITIONS

The $H \rightarrow V_1V_2$ process is fully characterized by the three masses involved and 5 of the 6 production/decay angles:

- * "Production" angles: θ* of the first boson
- * "Decay" angles:

Φ is the angle between the two bosons decay planes in the Higgs rest frame

 Φ_1 is the angle between the first boson decay plane and the Higgs direction in the Higgs rest frame

 θ_1 and θ_2 of the negative leptons in the corresponding boson rest frame

 m_1 , m_2 , $\cos\theta^*$, ϕ_1 , $\cos\theta_1$, $\cos\theta_2$, ϕ

LIKELIHOOD DEFINITION

likelihood is in the form
$$L = \prod_{ij} \operatorname{Poiss}(N_{\operatorname{data}}^{ij}|\mathscr{P}^{ij})$$

> i,j run over mass bin and discriminant bin

$$\begin{split} & \hspace{-0.5cm} \blacktriangleright \hspace{-0.5cm} \text{P}^{\text{ij}} \hspace{-0.5cm} \text{is} & \hspace{-0.5cm} \mathscr{P}^{ij} = \mu^{\text{signal}} \mathscr{L} f_i^{\text{signal}} N_{\text{signal}} \left[\varepsilon \cdot \text{PDF}_{\text{signal 1}}^{ij} + (1 - \varepsilon) \cdot \text{PDF}_{\text{signal 2}}^{ij} \right) \right] \\ & \hspace{-0.5cm} + \sum_{\text{background } k} f_i^{\text{background } k} N_{\text{background } k} \text{PDF}_{\text{background k}}^{\text{ij}}, \end{split}$$

- * ε is the parameter of interest
- signal strength μ is profiled
 ε = o for assumed hypothesis H_o
 - $\varepsilon = 1$ for tested hypothesis H_1

$H \rightarrow ZZ^{(*)} \rightarrow 4I$ (I=e, μ) : Overview

ATLAS-CONF-2013-013

The golden channel, with small cross-section but very good S/B ratio and fully-reconstructed mass

Signal reconstruction

Mass resolution in 4-µ channel

Two pairs of opposite-sign same-flavor isolated leptons

→ In region 125±5 GeV: 32 events observed [11.1±1.3 expected from bknd & 15.9±2.1 from SM Higgs]

Example of control regions: no isolation nor IP cuts on softest leptons

Spin-2 model

Spin 2 model for X→VV:

$$\begin{split} &A(X \to VV) = \Lambda^{-1} \left[2g_1 t_{\mu\nu} f^{*1,\mu\alpha} f^{*2,\nu\alpha} + 2g_2 t_{\mu\nu} \frac{q_\alpha q_\beta}{\Lambda^2} f^{*1,\mu\alpha} f^{*2,\nu\alpha} \right. \\ &+ g_3 \frac{\tilde{q}^\beta \tilde{q}^\alpha}{\Lambda^2} t_{\beta\nu} (f^{*1,\mu\nu} f^{*2}_{\mu\alpha} + f^{*2,\mu\nu} f^{*1}_{\mu\alpha}) + g_4 \frac{\tilde{q}^\nu \tilde{q}^\mu}{\Lambda^2} t_{\mu\nu} f^{*1,\alpha\beta} f^{*(2)}_{\alpha\beta} \\ &+ m_V^2 \left(2g_5 t_{\mu\nu} \epsilon_1^{*\mu} \epsilon_2^{*\nu} + 2g_6 \frac{\tilde{q}^\mu q_\alpha}{\Lambda^2} t_{\mu\nu} (\epsilon_1^{*\nu} \epsilon_2^{*\alpha} - \epsilon_1^{*\alpha} \epsilon_2^{*\nu}) + g_7 \frac{\tilde{q}^\mu \tilde{q}^\nu}{\Lambda^2} t_{\mu\nu} \epsilon_1^{*} \epsilon_2^{*} \right) \\ &+ g_8 \frac{\tilde{q}_\mu \tilde{q}_\nu}{\Lambda^2} t_{\mu\nu} f^{*1,\alpha\beta} \tilde{f}^{*(2)}_{\alpha\beta} + g_9 t_{\mu\alpha} \tilde{q}^\alpha \epsilon_{\mu\nu\rho\sigma} \epsilon_1^{*\nu} \epsilon_2^{*\rho} q^\sigma \\ &+ \frac{g_{10} t_{\mu\alpha} \tilde{q}^\alpha}{\Lambda^2} \epsilon_{\mu\nu\rho\sigma} q^\rho \tilde{q}^\sigma (\epsilon_1^{*\nu} (q \epsilon_2^*) + \epsilon_2^{*\nu} (q \epsilon_1^*)) \right], \end{split}$$

General interaction of spin-2 particle with gauge bosons pair has 10 independent tensor couplings

- Excluding generic spin-2 model is impossible at this stage
- Start with model with minimal couplings (g1=g5=1)
- Two production modes allowed: gg and qqbar
- Study 5 different gg fractions from 0% to 100%

0+ vs 0-

- □ ATLAS (j^p-MELA)
 - \square Expected p_0 for $0^- = 3.1 \sigma$.
 - \square Observed p_0 for $0^- = 2.8 \sigma$.
 - \square Observed p_0 for 0^+ = 0.25 σ .
 - ☐ CLs = 0.004 (1-CLs = 99.6 %).
- CMS (D_{JP})
 - \square Expected p_0 for $0^- = 2.6 \sigma$.
 - \square Observed p_0 for $0^- = 3.3 \sigma$.
 - \Box Observed p₀ for 0+= 0.5 σ .
 - \Box CLs = 0.0016 (1-CLs = 99.84 %).

030

-20

-10

0

20

 $-2 \times ln(L_{0'}/L_{0'})$

10

M_{YY} and $cos\theta*$ Correlation

- → good agreement between bands (from nominal method) and points (from alternative)
- → no large correlations observed

$H \rightarrow \gamma \gamma$: Overview

ATLAS-CONF-2013-012

Main production mode and decay through loops → sensitive to t / W couplings and to New Physics

Events / 2 GeV Selected diphoton sample **Background reduction** Invariant mass resolution Data 2011+2012 Sig+8kg Fit (m_=126.8 GeV) Data-driven background decomposition Bkg (4th order polynomial) Stability of EM calorimeter response ATLAS Preliminary 6000 vs time (and pile-up) <0.1% Se Se ATLAS Preliminary yy+DY Data 1.005 9099 Data 2012 nj Data 2500 4000 1.004 Winev Elp RMS: 0.023% is = 8 TeV, Ldt = 13.0 fb* Z->ee inv. mass energy RMS: 0.033% - Stat. uncertainty 1.003 യ് 2000 Total uncertainty 2000 1.002 1.001 1500 Fitted bkg 400 1000 0.999300 0.998 200€ 500 0.997 Data 2012,\s-8 TeV. | Ldr = 13.0 fb 0.996 Events ATLAS Preliminary 26/03 25/04 25/05 24/06 24/07 23/08 22/09 m_{rr} [GeV] m,, [GeV] Date (Day/Month) Fraction of photon candidates per Simple topology: two high-E_T Mass resolution is pile-up robust conversion status (>40,30 GeV) isolated photons ATLAS Simulation ATLAS Preliminary Unconverted photons Fraction of photon candidat - 10 ap < 15 Data 2012, vs = 8 TeV gg -> H -> yy Converted photons 4- 15 κ μ < 20</p> m, = 125 GeV Let = 3.3 ft 1 142681 events in 100<m₇₇ [GeV]<160 0.7 is = 8 TeV 0.08 0.6 0.5 0.06 → S/B~3% in mass window 0.4 0.3 0.04 ~125 GeV with 90% signal 0.2 0.1 116 118 120 122 124 126 128 130 132 134

Average interactions per bunch crossing

m., [GeV]

$H\rightarrow WW^{(*)}\rightarrow IvI'v$ ($I=e,\mu$)

ATLAS-CONF-2012-158

Results using different lepton-flavor final states with 0/1-jet and 13 fb-1 of 8 TeV data

Background-subtracted data and signal MC

- Main backgrounds estimated from signal-free control regions in data
- Observed local significance of the broad excess
 @ 125 GeV: 2.6σ (1.9σ expected for SM Higgs)
- Signal strength @ 125GeV μ=1.5±0.6

[dominated by systematic uncertainties]

SIGNAL SELECTION AND CONTROL REGIONS

- W+jets fully data driven
- WW, top, Z+jets, normalization from control regions

excess compatible with new particle @ 125 GeV

Variable	Spin analysis	Rate analysis [5]
common $e\mu/\mu e$ lepton selection		
$E_{ m T,rel}^{ m miss}$	> 20 GeV	> 25 GeV
N_{jets}	0 jets	$0, 1, \ge 2$ jet selections
$p_{ m T}^{\ell\ell}$	> 20 GeV	> 30 GeV
$m_{\ell\ell}$	< 80 GeV	< 50 GeV
$\Delta\phi_{\ell\ell}$	< 2.8	< 1.8

C.Maiani 04.04.2013 LHC France

BDT DISCRIMINANTS

