

periment at the LHC, CERN

rded: 2011-Jun-25 06:34:20.986785 GMT(08:34:20 CEST) nt: 167675 × 876658967

Higgs boson in the ZZ >41 Channel in CMS

Christophe Ochando (LLR) on behalf of the CMS collaboration

M_{4e}=125.7 GeV

http://iguana.cern.ch/ispy

(c) CERN 2009. All rights reserved.

A bit of history...

2

Introduction

"Golden channel": clean experimental signature, high precision on mass, information on JPC

- 4 primary isolated leptons (e, μ)
- Narrow resonance (1-2% resolution) over ~flat background
- BUT: low signal yields (<3 events / fb)</p>

> Extremely demanding channel for selection (ϵ^4):

- > Low pT leptons: major experimental challenge
 - Reconstruction/Identification
 (see Claude & Nenad's talks on leptons)
 - Background rejection & control

Objects: some highlights

Selection

- Electrons (muons) down to 7 (5) GeV.
- FSR γ Recovery on all channels
- Open phase space:
 - 40< mZ1 <120 GeV
 - 12< mZ2 <120 GeV

CMS Experiment at LHC, CERN Data recorded: Wed May 23 21:09:26 2012 CEST Run/Event: 194789 / 164079659

@ mH = 126 GeV, signal efficiencies: (within the geometrical acceptance for leptons) 31% (4e), 42% (2e2µ), 59%(4µ)

Background Control

 $H \rightarrow ZZ \rightarrow 4I$: Mass spectrum

 $H \rightarrow ZZ \rightarrow 4I$: Mass spectrum (zoom)

Beyond m4l

In addition to m4I, use more information in the final fit to:

further separate signal from background...

> Use full Kinematics...

Beyond m4l

In addition to m4I, use more information in the final fit to:

further separate signal from background...

> ...Build Kinematic Discriminant from Matrix Element techniques [since ICHEP '12]

Distribution in 121.5<m4l<130.5 GeV range

Beyond m4l

$H \rightarrow ZZ \rightarrow 4I$: Results

Significance @ 125.8 GeV: 6.7 σ (7.2 expected) with 3D (m_{4I}, K_D, V_D or pT/m_{4I}) model

Consistent (but better) wrt 2D (m4l, KD) or 1D (m4l) models.

Mass measurement: Lepton Momentum Scale & Resolution

Electron/Muon scale & resolution validated with Z, J/ ψ & $\Upsilon \rightarrow II$

M4I uncertainty used on a per-event basis to increase the precision on the mass measurement

> Per-lepton momentum uncertainties are calibrated & validated using Z \rightarrow ee & Z \rightarrow $\mu\mu$

Relative m4I mass uncertainty in good agreement between data & MC for various control regions: Z→4I, ZZ, Z+X (fakes).

14

Mass measurement with $H \rightarrow ZZ \rightarrow 4I$

Production Mechanisms

Measurement of signal strengths for production mechanisms associated with either top (ggF+ttH) or gauge (VBF+VH) couplings

Measurements are compatible with SM expectations

Conclusion

Observation of pp \rightarrow X \rightarrow ZZ \rightarrow 4 leptons (e, μ) process at 6.7 σ significance (7.2 expected in case of SM Higgs) with full Run I statistics, with a mass: mX=125.8 ± 0.5 (stat.) ± 0.2 (syst.)

Obtained exploiting3D model using m4l, kinematics and categorization sensitive to production mechanisms.

Measurement of properties (@125.8):

- "Cross-section" (relative to SM Higgs): $\sigma/\sigma_{SM} = 0.91 + 0.30_{-0.24}$
- Production Mechanisms:

$$\mu_{qqH+VH} = 1.0^{+2.4}_{-2.3}$$

 $\mu_{ggH+ttH} = 0.9^{+0.5}_{-0.4}$

Spin-Parity quantum numbers: see Roberto's talk.

So far, all measurements compatible with the production of SM Higgs boson (but still statistically limited)

BACK UP

SLIDES

CMS Results

New H \rightarrow VV results for Moriond '13:

- Н*→*үү: CMS-HIG-13-001
- $H \rightarrow ZZ \rightarrow 4I + 2I2\tau$: **CMS-HIG-13-002**
- $H \rightarrow WW \rightarrow 2I2\nu$: **CMS-HIG-13-003**
- ■H→Zγ: CMS-HIG-13-006
- WH \rightarrow WWW: **CMS-HIG-13-009**

All CMS Higgs public results:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG

Angles

 θ^* : angle between the parton collision axis z and X->ZZ decay axis z' (in X rest frame) Φ_1 : angle between zz' plane and plane of Z₁->ff (in X rest frame)

- θ_i : angle between direction of fermions fi from Zi->f_if_i and direction oposite the X in the
 - Z_i rest frame (i=1,2 for the first and second Z)

 Φ : angle between the decay planes of the two Z systems (in X rest frame)

Higgs \rightarrow ZZ \rightarrow 4 leptons candidate 24 vertices

$H \rightarrow ZZ \rightarrow 4I$: Signal Model

> m4l parametric model for signal: Breit-Wigner convoluted with double-sided Crystal Ball

> MC: POWHEG (ggH, VBF), Pythia (associated production=)

- Iow mass: narrow width approximation
- high mass:
 - line shape corrected to match complex-pole scheme.
 - Interference between ggH and ggZZ are taken into account.

 $H \rightarrow ZZ \rightarrow 4I$: Background Control

- > qq/gg→ZZ: from MC (POWHEG & gg2zz)
- **Reducible (Z+jets, tt, WZ,...):** from DATA.
- 2 "fake rate" methods:
- Method A:
 - Control Regions:
 - Z1+2 OS-SF "failing" leptons (2P2F, 2 "prompt" + 2 failed")
 - 3 prompt + 1 failing leptons (3P+1F):
 - target estimation of background WZ, $Z\gamma^*$, ...
 - Extrapolation to signal region: lepton mis-identified probability
- Method AA:
 - Control Region (CR):
 - Z1+ 2 SS-SF "loose" leptons
 - Extrapolation to signal region:
 - SS/OS factor from MC, cross-checked with data
 - lepton mis-identified probability (corrected for difference in composition of converted photon between CR & sample to extract misID probability)
- Validation: samples with relaxed charged and/or flavor requirements
- Final estimate: combination of the two methods (yields in control regions & part of the uncertainties un-correlated)

$H \rightarrow ZZ \rightarrow 4I$: m4l spectrum & tables

110 < m4l < 1000 GeV

Channel	4e	4μ	2e2µ	
ZZ background	78.9 ± 10.9	118.9 ± 15.5	$192.8\pm\!24.8$	
Z+X	$6.5^{+2.6}_{-2.6}$	$3.8^{+1.5}_{-1.5}$	$9.9\substack{+4.0 \\ -4.0}$	
All background expected	$85.5^{+11.2}_{-11.2}$	$122.6^{+15.5}_{-15.5}$	$202.7^{+25.2}_{-25.2}$	
$m_H = 125 \text{ GeV}$	3.5 ± 0.5	6.8 ± 0.8	8.9 ± 1.0	
$m_H = 126 \text{ GeV}$	3.9 ± 0.6	7.4 ± 0.9	9.8 ± 1.1	
Observed	86	125	240	

	110	<	m4l	<	160	GeV
--	-----	---	-----	---	-----	-----

Channel	4e	4μ	2e2µ	4ℓ
ZZ background	6.6 ±0.8	13.8 ±1.0	18.1 ±1.3	38.5 ±1.8
Z+X	2.5 ± 1.0	1.6 ± 0.6	4.0 ± 1.6	8.1 ±2.0
All background expected	9.1 ± 1.3	15.4 ± 1.2	22.0 ± 2.0	46.5 ± 2.7
$m_H = 125 \text{ GeV}$	3.5 ± 0.5	6.8 ±0.8	8.9 ±1.0	19.2 ±1.4
$m_H = 126 \text{ GeV}$	3.9 ±0.6	7.4 ±0.9	9.8 ±1.1	21.1 ± 1.5
Observed	16	23	32	71

$H \rightarrow ZZ \rightarrow 4I$: MZ1 vs MZ2

 $H \rightarrow ZZ \rightarrow 4I: K_D vs m_{4I}$

background

M4I vs KD cut (for illustration)

Model (in)dependence

MELA: KD from ICHEP'12

$H \rightarrow ZZ \rightarrow 4I: V_D vs m_{4I}$

$H \rightarrow ZZ \rightarrow 4I: p_{Tm4I} vs m_{4I}$

Mass measurement: Electron Momentum Scale & Resolution

Categories 32

Mass measurement: Electron Momentum Scale

Mass measurement: Muon Momentum Scale & Resolution

 $H \rightarrow ZZ \rightarrow 4I$: Mass Measurement

Mass Measurements with different techniques: 1D (m4l), 2D (m4l, δ_{m4l}) & 3D (m4l, K_D) gives consistent results

- Z→4I used to validate 1D mass measurement
- Good agreement between measured & PDG values

$H \rightarrow ZZ \rightarrow 4I$: some more distributions

36

$H \rightarrow ZZ \rightarrow 4I$: p-values & limits (low mass)

High Mass: $H \rightarrow ZZ \rightarrow 4I \& 2I2\tau$: limits

$H \rightarrow ZZ \rightarrow 4I: J^{PC}$ Analysis

The kinematics of the production and decay of the new boson are sensitive to its spin-parity state

- Build Discriminator (D) based of ratio of LO Matrix Elements
 - Don't use the system pT (NLO effect)
 - Don't use the rapidity (mostly PDF's)
 - D_{bkg}: separate signal from background
 5 angles, mZ1, mZ2 and m4l
 - $> D_J^P$: separate SM Higgs from alternative J^P hypothesis
 - 5 angles, mZ1, mZ2

$$\mathcal{D}_{J^{p}} = rac{\mathcal{P}_{\mathrm{SM}}}{\mathcal{P}_{\mathrm{SM}} + \mathcal{P}_{J^{p}}} = \left[1 + rac{\mathcal{P}_{J^{p}}(m_{Z_{1}}, m_{Z_{2}}, \vec{\Omega} | m_{4\ell})}{\mathcal{P}_{\mathrm{SM}}(m_{Z_{1}}, m_{Z_{2}}, \vec{\Omega} | m_{4\ell})}
ight]^{-1}$$

 \succ Perform statistical analysis in the 2D (D_{bkg}, D_JP) plane.

Distributions after $D_{bkg} > 0.5$ (for illustration)

data

0⁺, m_u=126 GeV

J^P=0⁺_h, m_u=126 GeV

Events

12

10

CMS preliminary \srv{s} = 7 TeV, L = 5.1 fb⁻¹ \srv{s} = 8 TeV, L = 19.6 fb⁻¹

CMS preliminary Vs = 7 TeV, L = 5.1 fb⁻¹ Vs = 8 TeV, L = 19.6 fb⁻¹

·····

data

0⁺, m_=126 GeV

------ J^P=2⁺_m (gg), m_=126 GeV

Events

10

CMS preliminary $\sqrt{s} = 7 \text{ TeV}, L = 5.1 \text{ fb}^{-1} \sqrt{s} = 8 \text{ TeV}, L = 19.6 \text{ fb}^{-1}$

0⁺, m_µ=126 GeV

----- J^P=0^{-,} m_=126 GeV

data

Events

6

$H \rightarrow ZZ \rightarrow 4I$: test statistic

Table 3: List of models used in analysis of spin-parity hypotheses corresponding to the pure states of the type noted. The expected separation is quoted for two scenarios, when the signal strength for each hypothesis is pre-determined from the fit to data and when events are generated with SM expectation for the signal yield (μ =1). The observed separation quotes consistency of the observation with the 0⁺ model or J^P model, and corresponds to the scenario when the signal strength is pre-determined from the fit to data. The last column quotes CL_s criterion for the J^P model.

J^P	production	comment	expect (μ =1)	obs. 0+	obs. J^P	CLs
0-	$gg \to X$	pseudoscalar	2.6 σ (2.8σ)	0.5σ	3.3σ	0.16%
0_{h}^{+}	$gg \to X$	higher dim operators	$1.7\sigma (1.8\sigma)$	0.0σ	1.7σ	8.1%
2^{+}_{mgg}	$gg \to X$	minimal couplings	1.8σ (1.9 σ)	0.8σ	2.7σ	1.5%
$2^{+}_{mq\bar{q}}$	$q\bar{q} ightarrow X$	minimal couplings	1.7σ (1.9 σ)	1.8σ	4.0σ	<0.1%
1- "	$q\bar{q} \rightarrow X$	exotic vector	2.8 σ (3.1σ)	1.4σ	$>4.0\sigma$	<0.1%
1+	$q\bar{q} \to X$	exotic pseudovector	2.3σ (2.6 σ)	1.7σ	$>4.0\sigma$	<0.1%

The studied pseudo-scalar, spin-1 and spin-2 models are excluded at 95% CL or higher

$H \rightarrow ZZ \rightarrow 4I$: Mixed parity

• 0- decay dominated by A3

$H \rightarrow ZZ \rightarrow 2I\nu$

- > Two leptons from a Z boson, large $E_{\rm T}^{\rm miss}$
- ▶ Using *m*_T as final variable
- Split in several categories: electrons/muons, 0/1/2-jets

 $H \rightarrow ZZ \rightarrow 2I2q$

- Two leptons from a Z boson, two jets from another Z boson
- ▶ Using $m_{2q2\ell}$ as final variable
- Split in several categories: electrons/muons, 0/1/2 b-jets