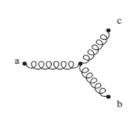
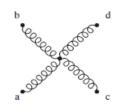
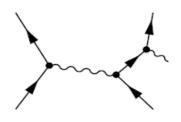


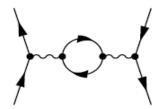
Maxime Gouzevitch


Théorie de la production des jets et des bosons W et Z au LHC


- 1) Fixed order calculations.
- 2) Resummations
- 3) EW corrections
- 4) Summary

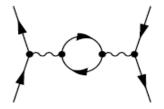
Slides taken from F. Petriello, M. Mangano, D. Kosower, P. Skands





Fixed order calculations

^a •QQQQQQQQ • b


1.1) Fixed order pQCD

ullet Basic concept of the fixed order calculations: develop the observable in a serie in strong coupling $oldsymbol{lpha}_s$

$$\mathcal{R} = \sum_{j=0}^{\infty} M_j \alpha_s^j$$

- For each observable LO is defined as minimal "j" value for which $M_i != 0$.
- At NLO you find two kind of contributions:
 - Real emissions: positive contribution to M_{j+1} .
 - Loop contributions.

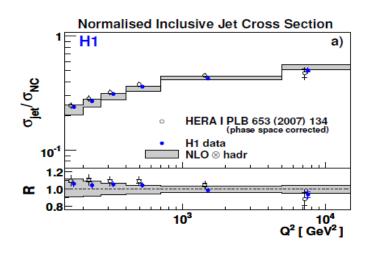
CMS Experiment at the LHC, CERN

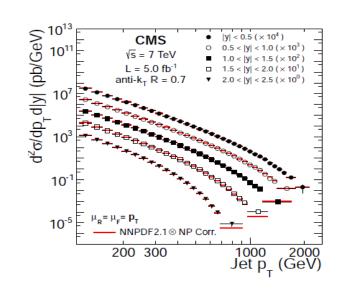
1.2) NLO

$$\sigma_{\text{n-jet}} = \sigma_{\text{n-jet}}^{LO} + \sigma_{\text{n-jet}}^{NLO} = \sigma_{\text{n-jet}}^{LO} + \left[\int_{n+1} d\sigma^R + \int_n d\sigma^V \right]$$

• NLO emission terms are divergent IR and collinear:

- If the observable is IR and collinear safe: ok for inclusive obs.
 - collinear divergences factorize out into the observable and PDF definition.
 - Infrared divergences cancel out between virtual and real corr.
- Need to use "dipole substraction" to make the observable practically "calculable" and produce differential predictions.

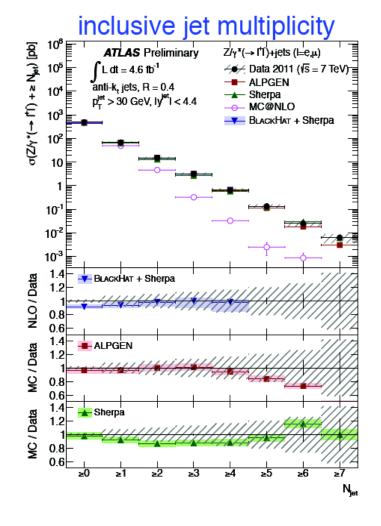

$$\sigma_{\mathrm{n-jet}}^{NLO} = \int_{n+1} \left[\mathrm{d}\sigma^R - \left(\mathrm{d}\sigma^A \right) \right] + \int_{n} \left[\mathrm{d}\sigma^V + \mathrm{d}\sigma^A \right]$$


Approximate realemission matrix elements in all singular limits so this difference is integrable. Simple enough to integrate so that 1/ε poles can be canceled against virtual corrections

CMS Experiment at the LHC, CERN

1.3) NLO

• This method is applied since 90's. For example NLOJET++ is used for 2-jet and 3-jet cross sections in ee, *ep* or *pp* collisions:

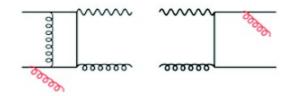


• But this method requests to build « by hand » the dipole substraction elements. We arrive now at the stage where this approach might be « automatized ».

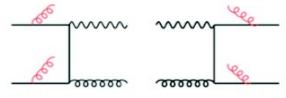
1.4) Automatized NLO

- Different groups invested in this industry which has good records: BlackHat, Rocket, Samurai, NGluon, MadLoop etc...
- Enters into the composition of new generation of MC generators: POWHEG, MC@NLO Sherpa@NLO.
- V+n-jets, n-jets (n = 1..4). The limiting factor is the computing time.

1.5) NNLO


Structure of NNLO calculations (From Franck Petrillo talk):

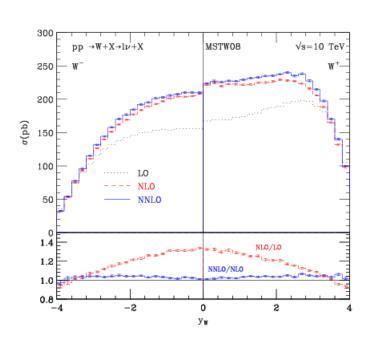
2-loop matrix elements, m partons

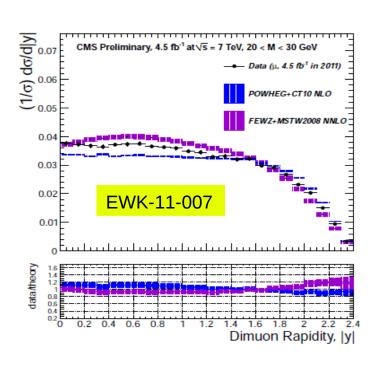

· Explicit IR poles from loop integrals

1-loop matrix elements, m+1 partons

- · Explicit IR poles from loops
- Implicit IR poles from single unresolved radiation

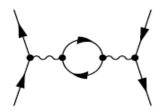
Tree level matrix elements, m+2 partons


Implicit IR poles from double unresolved radiation


- Two loop amplitudes quite well known for V+jet since 10 years.
- One loop correction also well known (similar concept to NLO).
- Double singular real emission is the bottleneck especially for differential cross sections.

1.6) NNLO inclusive V production

- Inclusive V production with leptonic final sate is an easier case since the final sate is not colored: $qq \rightarrow V \rightarrow ll$.
- NNLO is important at the level of precision we have now in inclusive V, V* production O(1%).


- This is a similar situation to : ee->V->qq.
- The PDFs are known to NNLO.

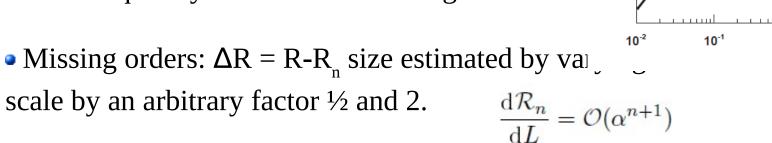
1.7) Loops and scale dependance

Loop contributions:

- Divergences when allowing infinite momentum in the loop:
 - Apply a renormalization procedure, for example loop energy cut off scale μ . Arbitrary scale affecting truncated serie but not the total cross section $L = \ln \frac{\mu_r}{\mu_0} = \ln x_r \; \text{ et } \; \alpha(\mu_r) = \frac{\alpha_s(\mu_r)}{4\pi}$

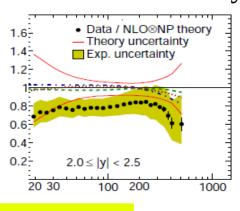
$$\left(\frac{\partial}{\partial L} + \frac{\partial \alpha_s}{\partial L} \frac{\partial}{\partial \alpha_s}\right) \mathcal{R} = 0$$

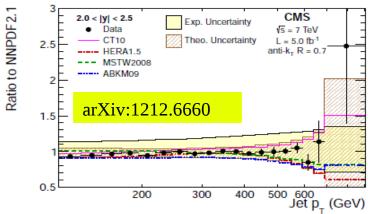
 Equation above is true for any cross section. This gives the famous « running constant » beta function:


$$\frac{\partial \alpha_s}{\partial L} = \beta(\alpha_s)$$

1.9) Scale dependance and missing orders

- The scale dependance arise from a non-complete cancellation of the strong coupling running and virtual loops: $\frac{d\mathcal{R}_n}{dL} = \mathcal{O}(\alpha^{n+1})$
 - LO μ L : the predicted cross section is a priori « whatever »
 - NLO: reduced scale dependence
 « Maximal cross section »
 and
 a « non-physical » region.

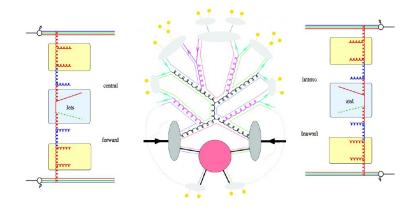

• The experience shows : μ_r = typical physical scale (p_T , M_V , etc...) seems frequently to fasten the convergence.



Naively: a smaller k-factor make think about a faster convergence.

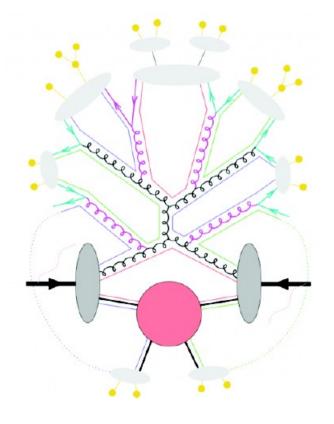
1.10) Does it always works?

- In pp collisions large small angle corrections: described by ISR and FSR.
- Visible when the small jet radius (R $<\sim$ 0.5) is used.
- Explicitly visible when jet radius ratio is calculated.
- Effects not covered by scale variations.



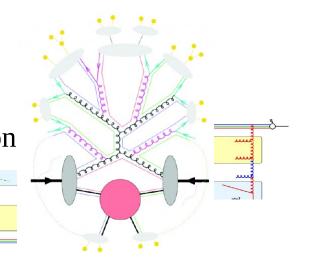
arXiv:1106.0208

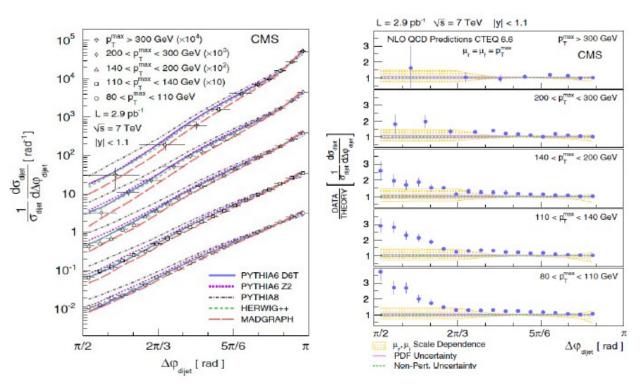
Resummations



2.1) Collinear and IR effects

- Measured cross sections are sensitive to:
 - non-perturbative effects and small angle radiations.
 - Large logarithms contribution when more than one different scale is involved: $\log (\mu_1/\mu_2)$
- One need to coherently connect:
 Hard scattering ME +
 Soft and collinear rad. +
 hadronisation + UE
- 2 solutions:
 - Parton showering
 - N^pLL Resummation




2.2) Parton showering approach

• The usual solution is to use the parton showering: ordered real (Q2, pT2...) emissions based on Sudakov form factors.

Equivalent to the collinear resummation.

Use by: PYTHIA, SHERPA, HERWIG...

2.3) ME+PS matching

- PS under-produce hard pT jets wrt to the multi-partom ME.
- Idea: Match multi-parton ME to the Parton shower.

Solution I: "Additive" (most widespread)

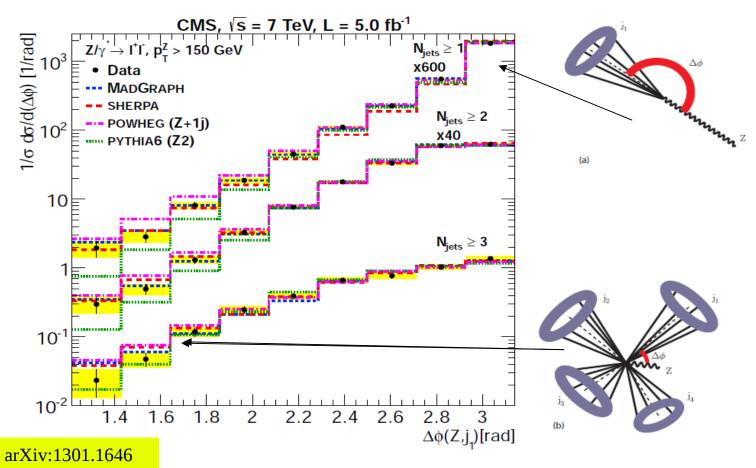
Seymour (Herwig), CPC 90 (1995) 95 CKKW (Sherpa), JHEP 0111 (2001) 063 Lönnblad (Ariadne), JHEP 0205 (2002) 046 Frixione-Webber (MC@NLO), JHEP 0206 (2002) 029 + many more recent ...

Only CKKW and MLM

Add event samples, with modified weights

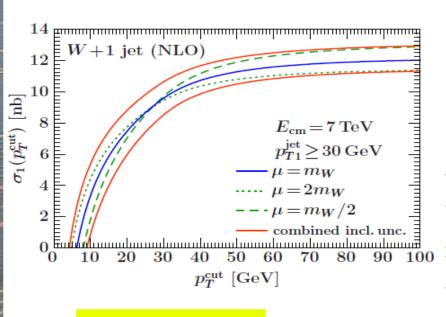
$$\rightarrow w_X = |M_X|^2 + Shower$$

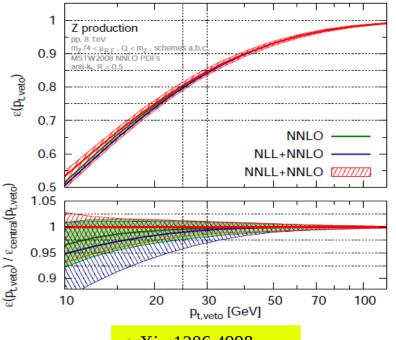
$$w_{X+1} = |M_{X+1}|^2 - Shower\{w_X\} + Shower$$


$$w_{X+1} = |M_{X+1}| - Shower\{w_{X,j}\} + Shower$$

 $w_{X+n} = |M_{X+n}|^2 - Shower\{w_{X,j}, w_{X+1}, ..., w_{X+n-1}\} + Shower$

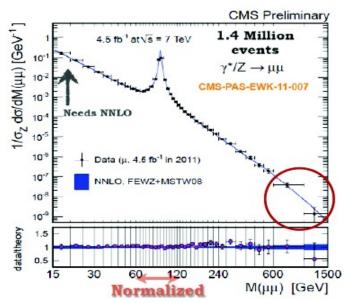
Solution II: Multiplicative. Used for example by POWHEG. See for details in backup.


2.4) Z+jets event shapes


Effect of ME+PS seen here:
 PYTHIA (2 partons LO+ PS)
 MadGraph, Sherpa (2,3,4 partons LO + PS);
 POWHEG (2 part. NLO+PS)

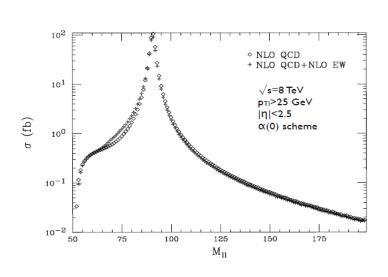
2.5) Resummation

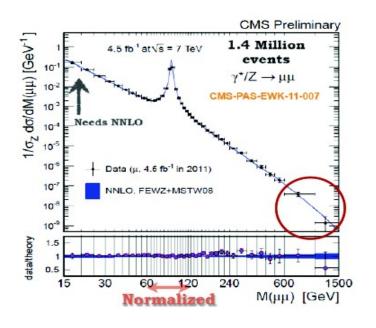
- An other way to correct for soft radiation effects is to carry out explicit analytical resummation. For example:
 - Jet veto used for Higgs searches or VV production. Tested on Z production.
 - Large terms in $\alpha_s^n L^{2n}$ $L = \ln(M/p_{\mathrm{t,veto}})$
 - NLO uncertainty estimation may fai. Need to bootstrap it or use resummations.



arXiv::1107.2117v2

arXiv:1206.4998




EW corrections

3.1) Few examples

- Important around the M(Z) and MT(W) peaks. Very precise measurements. One of the key points for W mass measurement at O(10 MeV) precision.
- The precision of DY at high mass is sufficient to be sensitive to EW corrections.

Numbers for 14 TeV LHC:

 $\gamma\gamma \rightarrow II: \delta_{\gamma\gamma} \approx +5\%$ QED: $\delta_{QED} \approx -(3-4)\%$

CMS Experiment at the LHC, CER

3.2) General situation for EW corrections

$$d\sigma = d\sigma_0 + d\sigma_{\alpha_s} + d\sigma_{\alpha} + d\sigma_{\alpha_s} + d\sigma_{\alpha_s} + \dots$$

Fixed order MC:

• FEWZ: α_s^2 (+ α for neutral DY)

Melnikov & Petriello, PRL 96 (2006) 231803 Li & Petriello, arXiv:1208.5967

• SANC: $\alpha_s + \alpha$

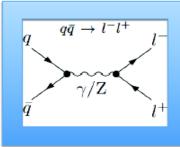
Bardin & al., arXiv:1207.4400

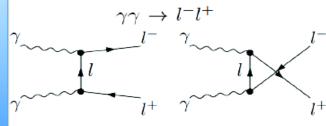
Matching realized using different generators:

● PYTHIA8/HERWIG++ ⊕ SANC Richardson & al., JHEP 1206 (2012) 090

MC@NLO ⊕ HORACE

Balossini & al., JHEP 1001 (2010) 013


NLO matched to PS (POWHEG):


W EW-BMNNP

L. B. & al., JHEP 1204 (2012) 037

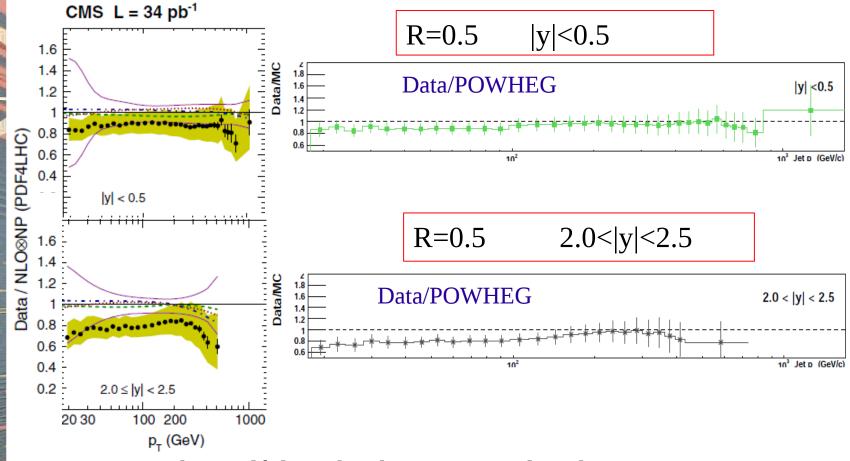
● W EW-BW

Bernaciack & Wackeroth, PRD 85 (2012) 093003

SUMMARY

	NLO	NNLO	NNLO+ NLO EW	NNLO + NNLL	LO+ PS	NLO+PS
W, Z, DY		DY NNLO	FEWZ PWHG	Banfi @ <i>Al</i> .		PPWHEG
W,Z+01 jet excl.				Banfi @ <i>Al</i> .		POWHEG
2-jets	NLOJET++					POWHEG
W+15- jets	BLACK HAT				MDG	SHERPA aMC@NLO
Z+14-jets	BLACK HAT				MDG	SHERPA aMC@NLO
15-jets	BLACK HAT				MDG	SHERPA aMC@NLO
W,Z+1 jet					PTIA	PWHG

- Fact 1: this table is intentionally not complete to keep it light.
- Fact 2: even if it was complete it would not be complete is few weeks: the field is very actively developing. This development is fueled by the active LHC SM program.

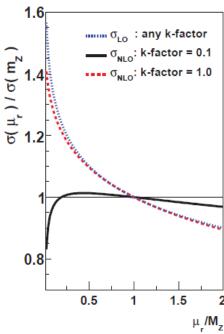


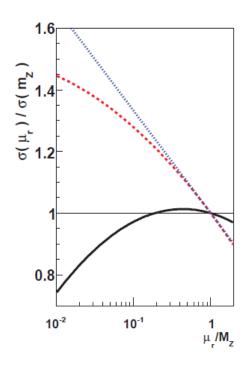
BACKUP

Phys. Rev. Lett. 107 (2011) 132001

S. Dooling, H. Jung

- POWHEG by itself describes better R=0.5 data than NLO+NP. PS represent part of the missing orders.
- Agreement not perfect at large y, but covered by systematics.

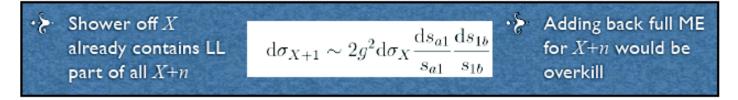




1.8) Scale dependance

• If you know matrix elements you know analytikally the scale dependence

$$(k_{factor} = M_{j+1}/M_j)$$
:



$$\frac{\mathcal{R}_1(L)}{\mathcal{R}_1(L=0)} = 1 - \beta_0 L,$$

$$\begin{split} \frac{\mathcal{R}_{1}(L)}{\mathcal{R}_{1}(L=0)} &= 1 - \beta_{0} L \,, \\ \frac{\mathcal{R}_{2}(L)}{\mathcal{R}_{2}(L=0)} &= 1 - \frac{(\beta_{1} L + \beta_{0}^{2} L^{2}) + \frac{2 \beta_{0}}{\alpha(L)} L \cdot k_{2}}{1 + k_{2}} \alpha^{2}(L) \end{split}$$

2.3) ME+PS matching

- PS under-produce hard pT jets wrt to the multi-partom ME.
- Idea: Match multi-parton ME to the Parton shower.

Solution 2: "Multiplicative"

Bengtsson-Sjöstrand (Pythia), PLB 185 (1987) 435 + more Bauer-Tackmann-Thaler (GenEva), JHEP 0812 (2008) 011 Giele-Kosower-Skands (Vincia), PRD84 (2011) 054003

One event sample

$$w_X = |M_X|^2$$

+ Shower

Make a "course correction" to the shower at each order

$$R_{X+1} = |M_{X+1}|^2/Shower\{w_X\}$$

+ Shower

$$R_{X+n} = |M_{X+n}|^2 / Shower\{w_{X+n-1}\}$$

+ Shower

Only VINCIA

PYTHIA: for X+1 @ LO (for color-singlet production and ~ all SM and BSM decay processes)

VINCIA: for all X+n @ LO and X @ NLO (only worked out for decay processes so far)

