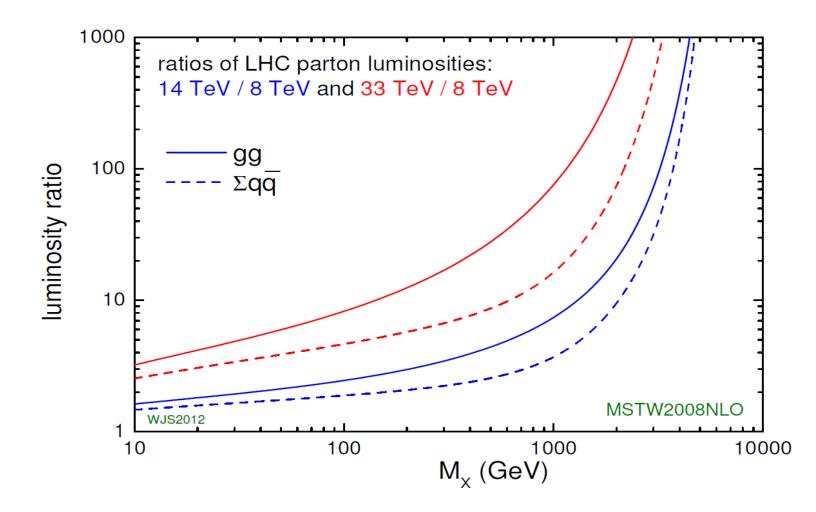
Beyond the SM searches: 'LHC14' prospects

Juan Alcaraz (CIEMAT)

LCH France 2013, Annecy

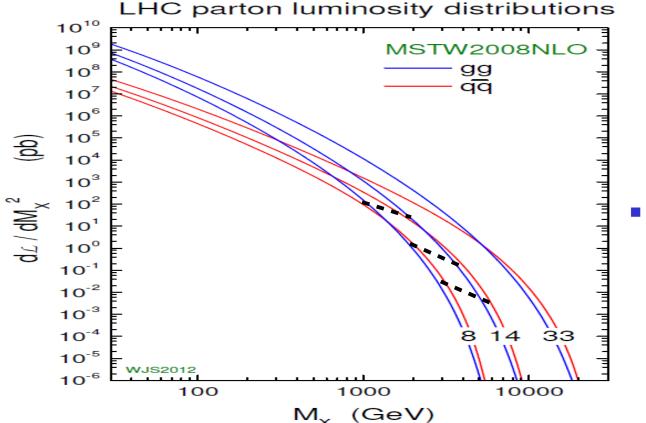
6 April 2013

Present status and BSM


- Let us assume in this talk that the Standard Model is a solid baseline:
 - At least in the sense that we have discovered a particle that matches as long as we could test – the last missing piece of the SM puzzle

So now we are really entering a true BSM phase, exploring new territory. Next discoveries will surely be 'unpredicted' to a higher or lesser extent...

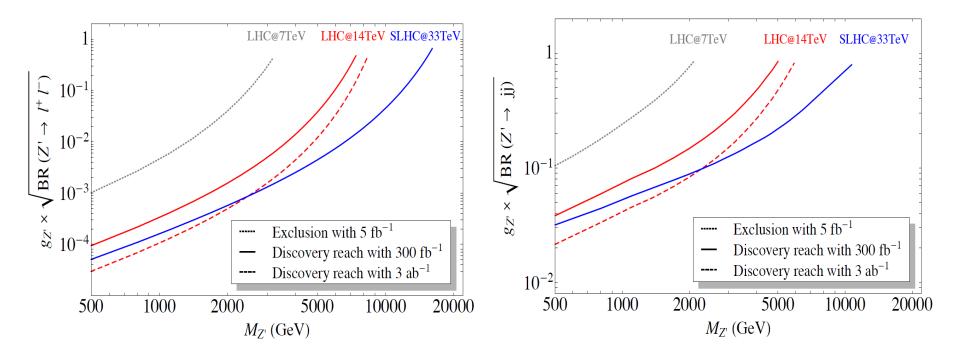
Basic picture


 √s ≈ 13 TeV versus √s ≈ 8 TeV: big step in physics reach at the highest scales/masses

Basic picture: highest mass reach

I3 TeV, L ≈ 300 fb⁻¹ vs √s ≈ 8 TeV, L ≈ 20 fb⁻¹

- > 1.5 times the current center-of-mass energy
- \approx 15 times the current integrated luminosity: \approx 4 increase in sensitivity

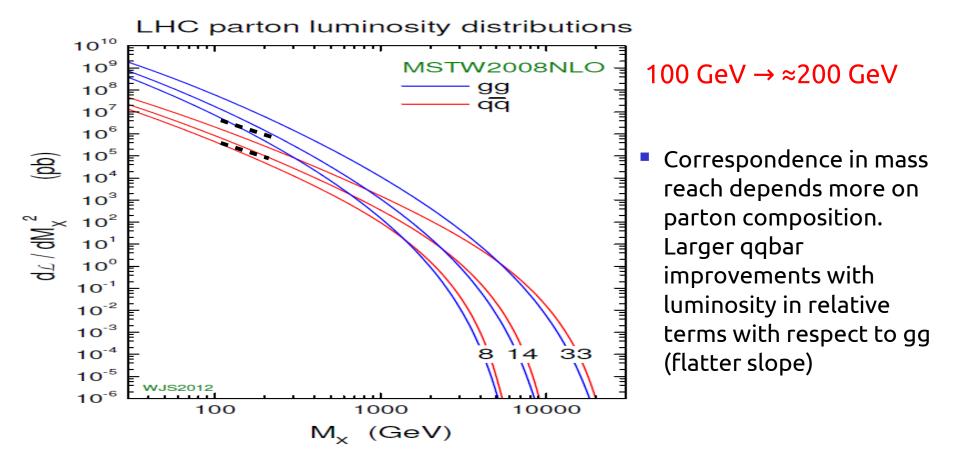

¹ TeV → ≈2 TeV

 Correspondence in mass reach largely independent of the parton composition in the inital state

J. Alcaraz, BSM searches prospects, LHC France Meeting, April 2013

Other simple estimates

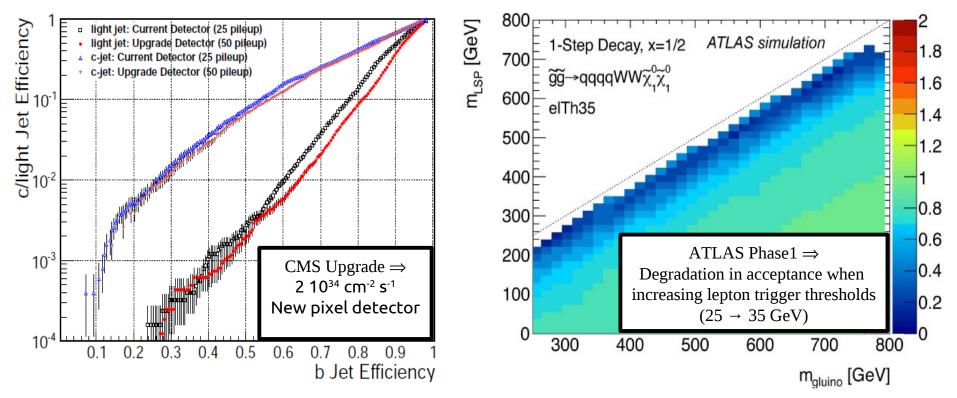
Contribution from the LHCC WG on Exotics tp ESG-Krakow



For dilepton and dijet final state resonances: just confirming the previous numbers (1 TeV → ≈2 TeV, 2 TeV → ≈4 TeV, 3 TeV → ≈6 TeV)

New physics at lower masses

I3 TeV, L ≈ 300 fb⁻¹ vs √s ≈ 8 TeV, L ≈ 20 fb⁻¹


- > 1.5 times the current center-of-mass energy
- \approx 15 times the current integrated luminosity: \approx 4 times more sensitivity

J. Alcaraz, BSM searches prospects, LHC France Meeting, April 2013

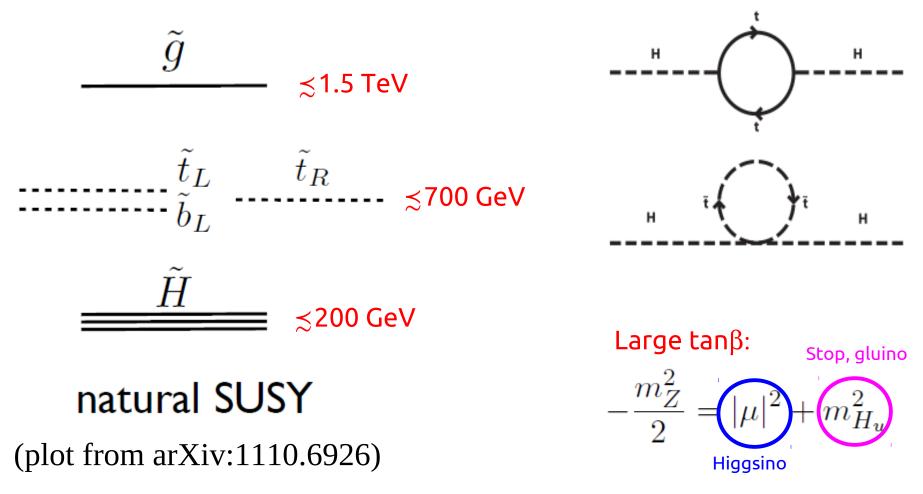
Experimental environment

- All these 'rule of thumb' estimates assume no changes in performance at the detector level or in the collision environment:
 - Planned improvements (better granularity, trigger, tracking, ...)
 - Higher collision rate, multiplicity, pileup ⇒ higher trigger thresholds, more complicated pattern recognition, ...

New physics at the TeV?

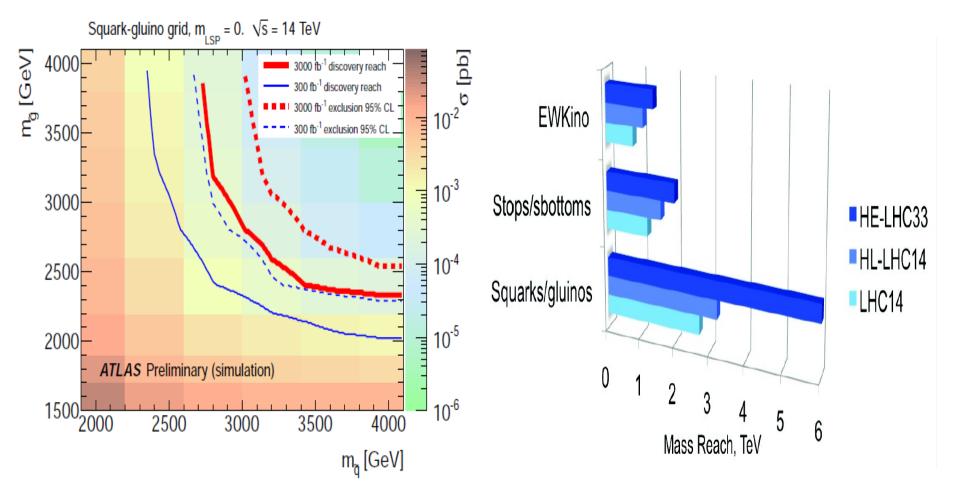
- What we know today:
 - The scalar that we have found looks rather 'standard' at first sight
 - No SUSY found until now (simplest scenarios excluded for the sparticles and masses that can be accessed at √s = 8 TeV)
 - No strict need for SUSY at the TeV scale to explain why $M_{\mu} \approx 126 \text{ GeV}$
- The good news:
 - It still seems 'unnatural' the absence of new physics at the TeV scale
 - Dark matter explanations point to WIMPs at the electroweak scale
- Our most promising links to new physics:
 - Neutrinos (but probably connecting to physics >> TeV scale)
 - Higgs: already at the weak scale, connected to mass (and gravity?)
 - Top: highest mass and coupling to Higgs, key ingredient to find any natural explanation for the light value of the Higgs mass

Current ATLAS status: SUSY

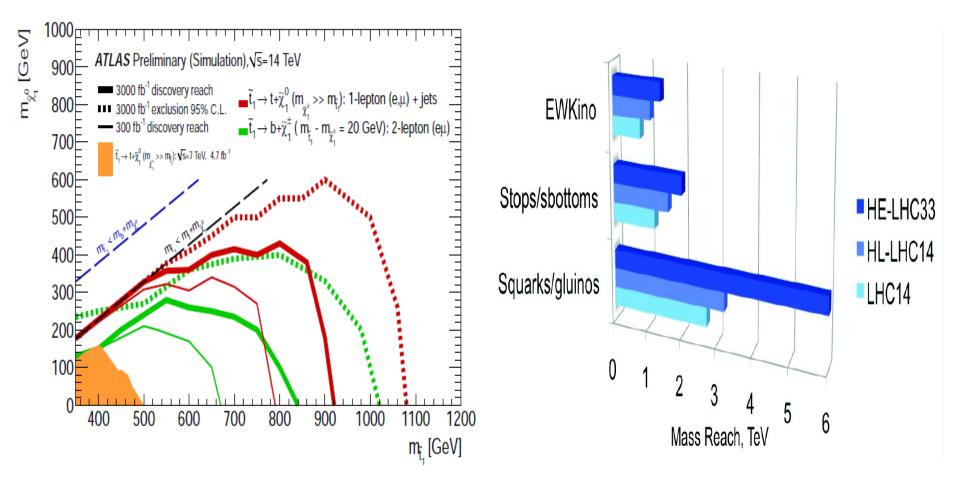

ATLAS SUSY Searches* - 95% CL Lower Limits (Status: March 26, 2013)

		AILAS SUST	Searches - 95% CL Lower Limits (Status: M	arch 20, 2013)						
		L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109]								
	MSUGRA/CMSSM : 0 lep + j's + $E_{T,miss}$		h.50 TeV g̃ = g̃ mass	1						
	MSUGRA/CMSSM : 1 lep + j's + E _{T,miss}	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-104]	1.24 TeV $\widetilde{q} = \widetilde{g}$ mass	ATLAS						
GS	Pheno model : 0 lep + j's + $E_{T,miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109]	1.18 TeV g mass (m(q) < 2 TeV, light							
ch	Pheno model : 0 lep + j's + $E_{T,miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109]	1.38 TeV q mass (m(g) < 2 TeV, lig							
Sar	Gluino med. $\tilde{\chi}^{\pm}$ ($\tilde{g} \rightarrow q q \tilde{\chi}^{\pm}$) : 1 lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [1208.4688]	900 GeV \tilde{g} mass $(m(\chi_1^0) < 200 \text{ GeV}, m(\chi^{\pm}) = 0$	$\frac{1}{Z}(m(\tilde{\chi})+m(\tilde{g}))$						
SI	GMSB (Ĩ NLSP) : 2 lep (OS) + j's + Ε _{T,miss} GMSB (τ NLSP) : 1-2 τ + j's + Ε _T	L=4.7 fb ⁻¹ , 7 TeV [1208.4688]	1.24 TeV ğ mass (tanβ < 15)							
Inclusive searches	GGM (bino NLSP) : $\gamma\gamma + E_{T \text{ miss}}^{T,\text{miss}}$	L=20.7 fb ⁻¹ , 8 TeV [1210.1314]	1.40 TeV g̃ mass (tanβ > 18)	ſ						
Ins	CCM (wine NILCD) we leave E ^{T,miss}	L=4.8 fb ⁻¹ , 7 TeV [1209.0753]	1.07 TeV \tilde{g} mass $(m(\bar{\chi}_1^0) > 50 \text{ GeV})$	$Ldt = (4.4 - 20.7) \text{ fb}^{-1}$						
nc	GGM (wino NLSP) : γ + lep + $E_{T,miss}^{T,miss}$ GGM (higgsino-bino NLSP) : γ + b + $E_{T,miss}^{T,miss}$	L=4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-144]	619 GeV g mass	5						
	CCM (higgsino-billo NLSP) : Y + D + E	L=4.8 fb ⁻¹ , 7 TeV [1211.1167]	900 GeV g̃ mass (m(x̄₁) > 220 GeV)	s = 7, 8 TeV						
	GGM (higgsino NLSP) : Z + jets + $E_{T,miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-152]	690 GeV \widetilde{G} mass $(m(\widetilde{H}) > 200 \text{ GeV})$ 645 GeV $F^{1/2}$ scale $(m(\widetilde{G}) > 10^4 \text{ eV})$	•						
	Gravitino LSP : 'monojet' + $E_{T, miss}$	L=10.5 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-147]								
3rd gen. gluino mediated	$\tilde{g} \rightarrow bb\tilde{\chi}_{1}^{0}: 0 \text{ lep } + 3 \text{ b-j's } + E_{T,miss}$ $\tilde{g} \rightarrow tt\tilde{\chi}_{1}^{0}: 2 \text{ SS-lep } + (0-3b-)j's + E_{T,miss}$	L=12.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-145]	1.24 TeV g̃ mass (mα(⁰ ₁) < 200 GeV)	8 TeV, all 2012 data						
rrd gen. gluino nediateo	$\tilde{g} \rightarrow tt \tilde{\chi}_1^\circ : 2 \text{ SS-lep} + (0.3b-)J's + E_{T,miss}$	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-007]	900 GeV \tilde{g} mass (any $m(\tilde{\chi}_1^0)$)	8 TeV, all 2012 data						
3rd gen. gluino mediateo	$\tilde{g} \rightarrow tt \chi^0$: 0 lep + multi-j's + $E_{T,miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-103]	1.00 TeV \widetilde{g} mass $(m(\overline{a}_1^0) < 300 \text{ GeV})$	8 TeV, partial 2012 data						
5 6	$q \rightarrow tt\chi^0$: 0 lep + 3 b-j's + $E_{T,miss}$	L=12.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-145]	1.15 TeV \tilde{g} mass $(m\bar{\chi}_{\gamma}^{0}) < 200 \text{ GeV}$							
	$\widetilde{bb}, \widetilde{b}_1 \rightarrow b\widetilde{\chi}_1^0: 0 \text{ lep } + 2\text{-b-jets } + E_{T,\text{miss}}$	1-12.8 fb ⁻¹ .8 TeV IATLAS.COME.2012.1651		7 TeV, all 2011 data						
3rd gen. squarks direct production	$\tilde{b}\tilde{b}, \tilde{b}_1 \rightarrow t\tilde{\chi}_1^{\pm}: 2$ \$S-lep + (0-3b-)j's + $E_{T,miss}$	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-007]	430 GeV b mass $(m(\overline{\chi}_1^{\pm}) = 2m(\overline{\chi}_1^{\circ}))$							
Icti	$\widetilde{t}t$ (light), $\widetilde{t} \rightarrow \widetilde{b} \widetilde{\chi}_{1}^{\pm}$: 1/2 lep (+ b-jet) + $E_{T, \text{miss}}$		167 GeV t mass $(m(\chi_1^0) = 55 \text{ GeV})$							
squ	$\widetilde{t}\widetilde{t}$ (medium), $\widetilde{t} \rightarrow b\widetilde{\chi}_{1}^{\pm}$: 1 lep + b-jet + $E_{T,miss}$	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-037]	160-410 GeV t mass $(m(\overline{\alpha}_1^0) = 0 \text{ GeV}, m(\overline{\alpha}_1^{\pm}) = 150 \text{ GeV})$							
pro	$\widetilde{t}\widetilde{t}$ (medium), $\widetilde{t} \rightarrow b\widetilde{\chi}_1^{\pm}$: 2 lep + $E_{T,miss}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-167]	160-440 GeV t mass $(m(\overline{\alpha}_1^0) = 0 \text{ GeV}, m(\overline{t}) - m(\overline{\alpha}_1^+) = 10 \text{ GeV})$							
ge	$\widetilde{\text{tt}}$ (heavy), $\widetilde{t} \rightarrow t \widetilde{\chi}_{1}^{0}$: 1 lep + b-jet + $E_{T,\text{miss}}$	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-037]	200-610 GeV t mass $(m(\overline{x}_1^0) = 0)$							
lire	tt (heavy), $t \rightarrow t \tilde{\chi}^0$: 0 lep + 6(2b-)jets + $E_{T,miss}$ tt (natural GMSB): Z(\rightarrow II) + b-jet + $E_{T,miss}$	L=20.5 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-024]	320-660 GeV t mass $(m(\tilde{\chi}_1^0) = 0)$							
6 0	tt (natural GMSB) : $Z(\rightarrow II) + D$ -Jet + E	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-025]	500 GeV t mass $(m(\overline{\alpha}_1^0) > 150 \text{ GeV})$							
	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z : Z(\rightarrow II) + 1 \text{ lep } + b \text{-jet} + E_{F, \text{miss}}^{T, \text{miss}}$	L=20.7 fb ⁻¹ .8 TeV IATLAS-CONE-2013-0251	520 GeV t_{α} mass $(m(\tilde{t}) = m(\tilde{r}^{0}) + 180 \text{ GeV})$							
	$[[, \mapsto [\chi]^0 : 2 \text{ lep } + E_{T, \text{miss}}]$	L=4.7 fb ⁻¹ , 7 TeV [1208.2884]	85-195 GeV I mass $(m(\bar{\chi}_1^0) = 0)$							
Sct	$\tilde{\chi}_{\tau}^{+}\tilde{\chi}_{\tau}, \tilde{\chi}_{\tau}^{+} \rightarrow \tilde{h}v(\tilde{h}v): 2 \text{ lep } + E_{T,\text{miss}}$ $\tilde{\chi}_{\tau}^{+}\tilde{\chi}_{\tau}, \tilde{\chi}_{\tau}^{+} \rightarrow \tilde{\tau}v(\tau\tilde{v}): 2\tau + E_{T,\text{miss}}$	L=4.7 fb ⁻¹ , 7 TeV [1208.2884]	110-340 GeV $\tilde{\chi}_{1}^{\pm}$ mass $(m(\bar{\chi}_{1}^{\circ}) < 10 \text{ GeV}, m(\bar{l}, \bar{\nu}) = \frac{1}{2}(m(\bar{\chi}_{1}^{\pm}) + m(\bar{\chi}_{1}^{\circ})))$							
EW direct	$\chi_{\chi}, \chi \to \psi(\psi): 2\psi + E_{T,miss}$	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-028]	180-330 GeV $\widetilde{\chi}_1^{\pm}$ Mass $(m\widetilde{\chi}_1^0) < 10 \text{ GeV}, m(\overline{\tau}, \overline{\nu}) = \frac{1}{2} (m\widetilde{\chi}_1^{\pm}) + m(\widetilde{\chi}_1^0))$	10111011						
	$\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{2}^{0} \rightarrow \widetilde{[}_{V}\widetilde{[}_{1}(\widetilde{v}v), [v]_{1}(\widetilde{v}v)] : 3 \text{ lep } + E^{T,\text{miss}}$	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-035]	600 GeV $\widetilde{\chi}_{1}^{\pm}$ mass $(m(\widetilde{\chi}_{1}^{\pm}) = m(\widetilde{\chi}_{2}^{0}), m(\widetilde{\chi}_{1}^{0}) = 0, m(\widetilde{l}, \widetilde{v}) \in \mathbb{R}^{2}$	as above)						
		L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-035]	315 GeV $\widetilde{\chi}_{1}^{\pm}$ mass $(m(\overline{\chi}_{1}^{\pm}) = m(\overline{\chi}_{2}^{0}), m(\overline{\chi}_{1}^{0}) = 0$, sleptons decoupled)							
s	Direct $\tilde{\chi}_1^{\pm}$ pair prod. (AMSB) : long-lived $\tilde{\chi}_1^{\pm}$	L=4.7 fb ⁻¹ , 7 TeV [1210.2852]	220 GeV $\widetilde{\chi}_1^{\pm}$ mass $(1 < \tau (\overline{\chi}_1^{\pm}) < 10 \text{ ns})$							
cle	Stable \tilde{g} , R-hadrons : low β , $\beta\gamma$	L=4.7 fb ⁻¹ , 7 TeV [1211.1597]	985 GeV ĝ mass							
ng	GMSB, stable $\tilde{\tau}$: low β	L=4.7 fb ⁻¹ , 7 TeV [1211.1597]	300 GeV $\tilde{\tau}$ mass (5 < tan β < 20)							
Long-lived particles	GMSB, $\tilde{\chi}_{0}^{0} \rightarrow \gamma \tilde{G}$: non-pointing photons	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2013-016]	230 GeV $\tilde{\chi}_1^{\circ}$ mass (0.4 < $\tau(\chi_1^{\circ})$ < 2 ns)							
	$\widetilde{\chi}^0_+ \rightarrow qq\mu \ (RPV)^1: \mu + heavy displaced vertex$	L=4.4 fb ⁻¹ , 7 TeV [1210.7451]	700 GeV q mass (1 mm < cτ < 1 m, g decoupled)	1 0.05						
	LFV : $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e + \mu$ resonance	L=4.6 fb ⁻¹ , 7 TeV [1212.1272]	1.61 TeV \tilde{v}_{τ} mass $(\lambda_{311}^2=0.10)$							
	LFV : $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau$ resonance Pilipoor DDV CMSSM + 1 lop + 7 i's + F	L=4.6 fb ⁻¹ , 7 TeV [1212.1272]	1.10 TeV \tilde{V}_{τ} mass $(\lambda'_{311}=0.10, \lambda_{1(2)33}=0.10, \lambda_{1(2)33}=0$	0.05)						
RPV	Bilinear RPV CMSSM : 1 lep + 7 j's + $E_{T,miss}$ $\widetilde{\chi}_1^*\widetilde{\chi}_1, \widetilde{\chi}_1^* \rightarrow W \widetilde{\chi}_1^0, \widetilde{\chi}_1^0 \rightarrow eev_{\mu}, e\mu v_{\mu}: 4 lep + E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-140]	1.2 TeV $\tilde{q} = \tilde{g} \text{ mass}$ (c $\tau_{LSP} < 1 \text{ mm}$ 760 GeV $\tilde{\chi}^+_{*}$ mass ($m(\tilde{\chi}^0_{*}) > 300 \text{ GeV}, \lambda_{**} > 0$)							
RI	$\chi_1 \chi_1, \chi_1 \rightarrow W \chi_1, \chi_1 \rightarrow e e v_{\mu}, e \mu v_e$: 4 lep + $E_{T,miss}$	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-036]	350 GeV $\tilde{\chi}_1^+$ Mass $(m(\chi_1^0) > 80 \text{ GeV}, \chi_{121} > 0)$ 350 GeV $\tilde{\chi}_1^+$ mass $(m(\chi_1^0) > 80 \text{ GeV}, \chi_{133} > 0)$							
	$\widetilde{\chi}_{1} \widetilde{\chi}_{1}' \dots, \widetilde{\chi}_{1} \rightarrow \tau \tau v_{e}, e \tau v_{\tau} : 3 \text{ lep } + 1\tau + E_{T, \text{miss}}$	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-036]	$\frac{350 \text{ GeV}}{666 \text{ GeV}} = \frac{(m(\chi_1) > 80 \text{ GeV}, \lambda_{133} > 0)}{\tilde{q} \text{ mass}}$							
	$\tilde{g} \rightarrow qqq : 3$ -jet resonance pair	L=4.6 fb ⁻¹ , 7 TeV [1210.4813]	5							
	ğ→tt, t→bs : 2 SS-lep + (0-3b-)j's + E Scalar gluon : 2-jet resonance pair	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-007]	880 GeV g mass (any m(t))	I						
WIM	P interaction (D5, Dirac χ) : 'monojet' + E	L=4.6 fb ⁻¹ , 7 TeV [1210.4826]	100-287 GeV Sgluon mass (incl. limit from 1110.2693)	11 (D0)						
	T,miss	L=10.5 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-147]	704 GeV M* scale (<i>m</i> _x < 80 GeV, limit of < 687 G	ev for DB)						
		10 ⁻	1 1	10						
		10								
*Only a	selection of the available mass limits on new st	ates or phenomena shown.		*Only a selection of the available mass limits on new states or phenomena shown. Mass scale [TeV]						

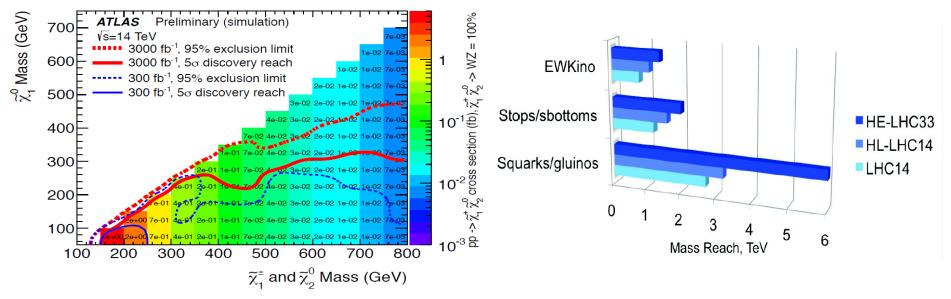
*Only a selection of the available mass limits on new states or phenomena shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty.


Naturalness and SUSY

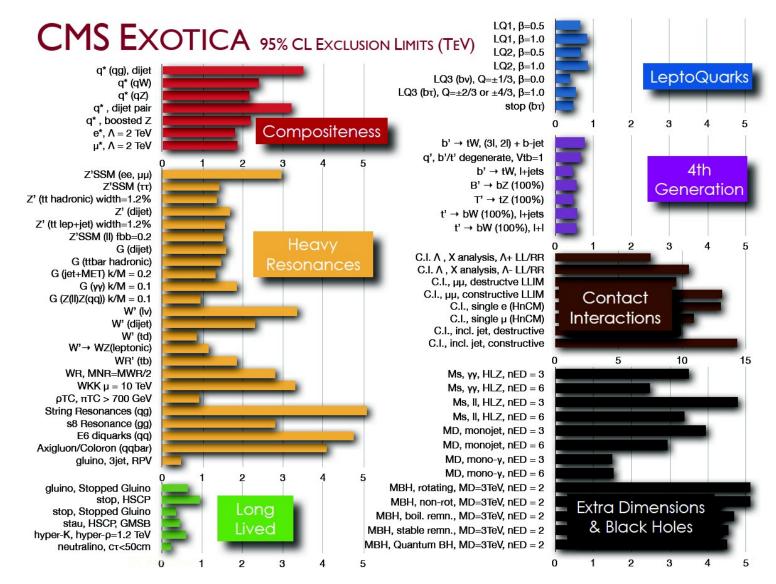
Choosing masses appropriately to evade current SUSY limits (little hierarchy problem):


SUSY expectations

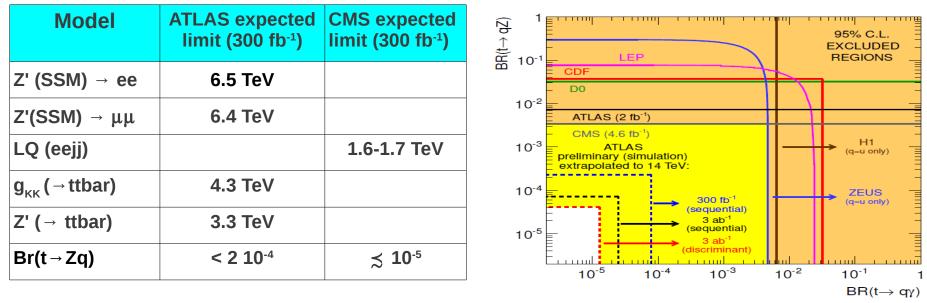
- Current limits in s-hadron decay chains (m_{LSP}=0): ≈ 1 TeV
- Estimated reach for $\sqrt{s} \approx 14 \text{ TeV}$, 300 fb⁻¹: $\approx 2-2.5 \text{ TeV}$


SUSY expectations

- Current limits in direct stop production decay ($\rightarrow t\chi^0, m_{LSP}$ small) $\approx 600 \text{ GeV}$
- Estimated reach in stop→t χ^0 for $\sqrt{s} \approx 14$ TeV, 300 fb⁻¹: approaching 1 TeV


More SUSY expectations

- Current tightest limits in ewkino masses via EWK production (with sleptons decoupled, m_{LSP}≈0) ≈ 300 GeV.
- Significant improvements expected for $\sqrt{s} \approx 14$ TeV, 300 fb⁻¹


- If we do not see hints of natural SUSY in the presence of significant missing energy, we should still exploit other possibilities:
 - Compressed spectra (small missing energy, pathological signatures)
 - R-parity violation models
 - More exotic SUSY possibilities?
- J. Alcaraz, BSM searches prospects, LHC France Meeting, April 2013

Current CMS searches: exotics

New resonances, FCNC

- Typical lower limits with 8 TeV data for Z' SSM: ≈ 3 TeV (CMS)
 - Expected limits for $\sqrt{s} \approx 14$ TeV, 300 fb⁻¹: ≈ 6.5 TeV (ATLAS)
- Current Z' → ttbar limit ≈ 1.5 TeV (CMS)
 - Expected limit for $\sqrt{s} \approx 14$ TeV, 300 fb⁻¹: ≈ 3.3 TeV (ATLAS)
- Leptoquark limit (first generation): 0.8 TeV (CMS)
 - Expected limit for √s ≈ 14 TeV, 300 fb⁻¹: ≈ 1.6-1.7 TeV (CMS)
- Significant increase in sensitivity for FCNC in the top sector

New physics via effective Lagrangians

A different way to look for deviations, more model independent, giving access (potentially) to higher energy scales but without specifying any particular model. Extending the SM in a linear way:

$$\mathcal{L}(\sqrt{s} \ll \Lambda) = \mathcal{L}_{SM} + \sum_{n=5}^{\infty} \frac{1}{\Lambda^{n-4}} \left(\sum_{j} f_{nj} \mathcal{O}_{nj} \right)$$

where:

- \mathcal{O}_{nj} are terms containing SM fields
- *f_{nj}* are adimensional couplings of order "1"
- Λ is large, of the order of the scale of new physics
- Corrections to the SM are suppressed by powers of $\frac{\sqrt{s}}{\Lambda}$ (and also $\frac{v}{\Lambda}$, with v = 246 GeV)
- Dominant terms respecting the SU(2)_L × U(1)_Y symmetry of the SM were collected already in 1986 (W. Buchmüller and D. Wyler, Nucl.Phys.B268:621,1986)
- Many examples: searches for anomalous couplings, contact interactions, effects of (non-resonant low-scale gravity), ...
- J. Alcaraz, BSM searches prospects, LHC France Meeting, April 2013

Limits on new scales, anomalous couplings, ...

Anomalous coupling limits:

$$egin{array}{rcl} \Delta g_1^Z & o & i \; rac{f}{\Lambda^2} (D_\mu \Phi)^\dagger (ec{ au} \, W^{\mu
u}) (D_
u \Phi) \ \ \Delta k_Z & o & i \; rac{f}{\Lambda^2} (D_\mu \Phi)^\dagger B^{\mu
u} (D_
u \Phi) \ \ \lambda_\gamma & o \; rac{f}{\Lambda^2} \; \epsilon_{IJK} \; W^{I
u}_\mu \; W^{J
ho}_
u \; W^{K\mu}_
ho \end{array}$$

(CMS estimates, based on Eur.Phys.J. C39 (2005) 293)

coupling	LHC	Approximate scale probed
g_1^Z	0.0030	4.5 TeV
λ_{γ}	0.0009	2.7 TeV
λ_Z	0.0023	1.7 TeV
κ_{γ}	0.026	1.5 TeV
κ_Z	0.037	1.3 TeV

- Testing new physics effects via loops at the TeV scale...
- J. Alcaraz, BSM searches prospects, LHC France Meeting, April 2013

Deviations in boson-boson scattering

 Vector boson scattering effective interactions (EWK chiral Lagrangian): a₄[Tr(V_µV_ν)]²
 300 fb⁻¹ at 14 TeV are sensitive to a₄>0.066 (ATLAS); precision electroweak constraints of order 10⁻³-10⁻²

• They also lead to resonances (using unitarization of amplitudes):

There is a minimary of a minim						
model	baseline	500 GeV scalar	800 GeV vector	1150 GeVvector		
(a_4, a_5)	(0, 0)	(0.01, 0.009)	(0.009, -0.007)	(0.004, -0.004)		
S/B	$(3.3 \pm 0.3)\%$	$(0.7 \pm 0.1)\%$	$(4.9 \pm 0.3)\%$	$(5.8 \pm 0.3)\%$		
$S/\sqrt{B} (L = 300 \text{fb}^{-1})$	2.3 ± 0.3	0.6 ± 0.1	3.3 ± 0.4	3.9 ± 0.4		

Table 2: Summary of sensitivity to various resonance hypotheses in the semi-leptonic WW channel.

Outlook

- In general, the LHC with $\sqrt{s} \approx 13$ TeV and L = 300 fb⁻¹ represents a significant step forward in the search for physics effects beyond the SM:
 - In most cases we will be sensitive to twice the value of the mass limits set at √s ≈ 8 TeV
 - We will be able to study in detail new particles with masses not so far from the present exclusion limits
 - Effects from higher physics scales could also manifest in several precision measurements/searches: contact interactions, anomalous couplings, FCNC searches, ...
- If SUSY is close to 'natural' we should be able to see new physics signals, although the experimental path could be rather complicated in some pathological scenarios
- It is probably time to find something unexpected at the TeV scale, and for sure non-SM, so stay tuned!