Searches for new physics in diphoton events with ATLAS

Quentin Buat LPSC Grenoble LHC France 2013

stNew physics in diphoton events means high mass events. Not the 125 GeV bump.

The hierarchy problem

The hierarchy problem: $M_{ew} \sim 10^{-16} M_{Pl}$.

- In the context of SM: Higgs mass stability issue.
 - Radiative corrections:

• If $\Lambda \sim M_{Pl}$: to get $m_h \sim 125$ GeV, the bare Higgs mass and the radiative corrections need to cancel out with a precision of 10^{-32} !

Extra Dimensions models (1/2)

Extra-Dimensions paradigm:

• The fundamental M_{Pl} is close to M_{ew} but gravity is diluted by the presence of extra-dimensions (ED) and M_{Pl} appears much weaker.

- But precision measurements forbid the presence of ED at a size $R \ge I \text{ TeV}^{-1}$.
 - ED have to be smaller or not accessible to SM fields.

Large Extra Dimensions:

Postulated by Arkani-Hamed, Dimopoulos, Dvali (ADD): Phys. Lett. B 429 (1998) 263

 $\Rightarrow M_{pl(4)}^2 \sim M_{pl(4+n)}^{n+2} L^n$

- Gravity is the only field allowed to propagate into the 5D space.
- Compactification leads to an infinite set of KK particles with a very small modal spacing.
- Divergence in the number of modes imposes an UV cutoff $M_{s.}$

Extra Dimensions models (2/2)

Warped Extra Dimensions:

Postulated by Randall and Sundrum (RS): Phys. Rev. Lett. 83 (1999) 3370

- 5D space-time with two branes.
- Gravity is the only field allowed to propagate into the 5D space.
- The strength of gravity is diluted through a warp factor k.
- The compactification leads to a series of narrow resonances.

$$ds^{2} = e^{-2k|y|}\eta_{\mu\nu}dx^{\mu}dx^{\nu} + dy^{2}$$

SM $\gamma\gamma$ production

- Dominant background in this search.
- LO prediction and fragmentation model available in standard MC generators:
 PYTHIA+PHOTOS, SHERPA
- Parton-level calculation for higher order terms and precise fragmentation calculation:
 - DIPHOX, MCFM, 2gNNLO

Extra Dimensions in the $\gamma\gamma$ final state

Detecting diphoton events

Process	Diphoton	HardQCD	Z→e⁺e⁻	
XS (mb) for $\sqrt{\hat{s}} > 140 \text{ GeV}$ (from Pythia8)	4.49.10 ⁻⁹	8.29.10 ⁻²	4.36.10 ⁻⁹	
Ratio to Diphoton XS	Ι	~2.107	~	

• photons/jets separation needs specific tools: identification and isolation.

• electrons/photons separation is ensured by the tracker (special care is taken for the 30% of converted photons).

γ /jet separation: identification

- Exploit the granularity of the ECAL to describe the EM showers shape.
- Two working points: loose and tight.

- Tight - Tighter cut in the middle layer. - Requirement on the first layer (reject $\pi_0 \rightarrow \gamma \gamma$).
- ▶ Good signal efficiency (~90%). jet rejection
- ~5X better than loose.
- Used as photon identification in the analysis.
- Reverting Tight provides a large control region to study fakes.

γ /jet separation: isolation

9 TIGHT sample \Rightarrow obtain E_{T}^{iso} for photons

Isolation to determine the sample composition

Subleading Photon

Data/background comparison

New J. Phys. 15 043007, <u>http://arxiv.org/abs/1210.8389</u>. Plot available <u>here</u>.

Constraints on Warped Extra Dimensions

New J. Phys. 15 043007. Plots available here.

• Coupling $k/M_{Pl}=0.1$: Observed limit@95% CL on $m_G = 2.06$ TeV.

• Combination with dilepton result <u>JHEP 1211 (2012) 138</u> improves m_G limit to 2.23TeV.

Constraints on Large Extra Dimensions

New J. Phys. 15 043007. Plots available here.

- Several values for F in the litterature.
- GRW: F=1. Observed limit@ 95% C.L: F/M_s⁴= 0.0085, M_s= 3.29 TeV.
- Combination with dilepton result Phys. Rev. D 87, 015010 (2013) improves M_S limit to 3.51 TeV.

Conclusions

• With the full dataset of $\sqrt{s} = 7$ TeV pp collisions:

- The presence of new phenomena in diphoton events has been tested.
- Resonant and non-resonant scenario have been constrained.
- The result has been published by NJP: New J. Phys. 15 043007.

• ~20 fb⁻¹ of data with $\sqrt{s} = 8$ TeV pp collisions:

- Expect large improvement on the limits (~0.5 TeV).
- Dilepton preliminary result with 8 TeV data already there: # m_G limit = 2.47 TeV for k/M_{Pl}=0.1(ATL-CONF-2013-017).

• Waiting for the LHC nominal energy !

Related CMS searches:

- Resonant: dilepton PAS EXO12015, diphoton Phys. Rev. Lett 108(2012) 11180.
- Non-resonant: dielectron <u>PAS EXO12031</u>, dimuon <u>PAS EXO12027</u>, Diphoton Phys. Rev. Lett 108(2012) 111801.

Backup

ATLAS/CMS comparison

- Similar strategy:
 - jet faking photon estimated by data-driven techniques (reverting id/isolation criteria)
 - SM diphoton estimated by simulations+NLO cross-section computations
 - m_{YY} shape analysis for RS and counting experiment for ADD.
- ATLAS uses the full dataset, CMS only half of it:
 - ATLAS limits are more stringents.

ATLAS ED Searches

Background composition

(leading photon)

E^{iso}_{T.1} [GeV]

300E

200F

0<u></u>5

(sub-leading photon)

E^{iso}_{T,2} [GeV]

Analysis strategy

Background estimate

- Irreducible: SM $\gamma\gamma \rightarrow$ MC predictions.
- Reducible: Jets faking photons \rightarrow Data driven.
- Electrons faking photons: negligible.
- Composition determined in the mass control region: [140,400] GeV.
- Total prediction normalised to the data in the mass control region.

- Obtain the m_{YY} lineshapes for each bkg component.

- Weight them according to the composition of the mass control region.

Interpretation

 $m_{\gamma\gamma}$ modeling

- Test the agreement between the data and the expectation.
- Set limits in the context of two ED models.

Data selection

• Irreducible

- Direct production (a),(b) generated with PYTHIA.
- NLO+fragmentation calculation with DIPHOX:
 - NLO/LO m_{YY} -dependent kfactor.
 - 20%-25% $m_{\gamma\gamma}\text{-dependent}$ uncertainties due to PDFs and scales
- Reducible
 - Select events passing the data selection but with reverse-id criteria.
 - \bullet Fit the m_{YY} lineshape and extrapolate to higher masses

Background systematic uncertainties

Warped Extra Dimensions

- Signal generated with Pythia6.
- Xsec corrected @NLO: kfactor = 1.75.
- Setting limit on σ .B:
 - Binned likelihood fit of the m_{YY} shape.
 - Bayesian approach with flat prior on the production cross-section.
- Combined with Dilepton 7TeV result (<u>Phys. Lett. B</u> <u>719 (2013) 242-260</u>)

 m_G [TeV]

Channel(s)	95% CL Observed (Expected) Limit [TeV]						
Usod	k/\overline{M}_{Pl} Value						
Useu	0.01	0.03	0.05	0.1			
$G \to \gamma \gamma$	1.00(0.98)	1.37(1.49)	1.63(1.73)	2.06(2.05)			
$G ightarrow ee/\mu\mu$	0.92(1.02)	1.49(1.53)	1.72(1.81)	2.16(2.17)			
$G \to \gamma \gamma/ee/\mu \mu$	1.03(1.08)	1.50(1.63)	1.89(1.90)	2.23(2.23)			

Large Extra Dimensions

Combination with Dilepton results <u>Phys. Rev. D 87, 015010 (2013)</u> improves limits from few hundreds of GeV. ex: GRW limit improved to 3.51 TeV **RS BR**

CMS: Diphoton Phys. Rev. Lett. 108(2012) 11180

TABLE III. The 95% C.L. lower limits on M_1 for given values of the coupling parameter \tilde{k} . For $\tilde{k} < 0.03$, masses above the presented limits are excluded by electroweak and naturalness constraints. The median expected lower limits are numerically the same for the presented precision except for the $\tilde{k} = 0.01$ case, for which the expected lower limit on M_1 is 0.84 TeV.

-	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10
M_1 [TeV]	0.86	1.13	1.27	1.39	1.50	1.59	1.67	1.74	1.80	1.84

TABLE II. The 95% C.L. lower limits on M_S (in TeV) in the GRW, Hewett, and HLZ conventions for two values of the ADD signal K factor, 1.0 and 1.6 \pm 0.1. All limits are computed with a signal cross section truncated to zero for $\sqrt{\hat{s}} > M_S$, where $\sqrt{\hat{s}}$ is the center-of-mass of the partonic collision. The limits are presented for both positive and negative interference in the Hewett convention and for $n_{\text{ED}} = 2-7$ in the HLZ convention. The median expected lower limits are given in parentheses.

	Hewett			HLZ					
K	GRW	Positive	Negative	$n_{\rm ED}=2$	$n_{\rm ED}=3$	$n_{\rm ED} = 4$	$n_{\rm ED}=5$	$n_{\rm ED}=6$	$n_{\rm ED} = 7$
1.0	2.94	2.63	2.28	3.29	3.50	2.94	2.66	2.47	2.34
	(2.99)	(2.67)	(2.31)	(3.37)	(3.56)	(2.99)	(2.71)	(2.52)	(2.38)
1.6 ± 0.1	3.18	2.84	2.41	3.68	3.79	3.18	2.88	2.68	2.53
	(3.24)	(2.90)	(2.44)	(3.77)	(3.85)	(3.24)	(2.93)	(2.73)	(2.58)

26

PAS EXO12015/arXiv:1212.6175

