

Radiative B decays at LHCb Status & prospective

2-6 Avril 2013, Annecy

Olivier Deschamps Laboratoire de Physique Corpusculaire de Clermont-Ferrand Université Blaise Pascal & IN2P3/CNRS

• Radiative $b \rightarrow q\gamma$ (q=d,s) transition : FCNC electro-magnetic penguin

Leading (em dipole) operator in effective Hamiltonian :

$$O_7 \propto m_b \overline{s} \sigma^{\mu\nu} F_{\mu\nu} (1+\gamma_5) b + m_s \overline{s} \sigma^{\mu\nu} F_{\mu\nu} (1-\gamma_5) b$$

$$\tan \psi = \left| A_L(b_L \to s_R \gamma_R) \right| / \left| A_R(b_R \to s_L \gamma_L) \right| \approx m_s / m_b$$

New physics affect the transition dynamics

BR, A_{CP} , Isospin asymmetry, helicity structure of the photon

Radiative decays at LHCb

Experimental issues with radiative @ LHCb

- Due to trigger rate constraint versus large photoninduced combinatorial, the radiative decays in LHCb mostly rely on high pT photons :
 - L0 threshold in 2011(2012) : $\mathsf{E}_{\mathsf{T}}(\gamma)$ > 2.5-3.0 GeV
 - Typical LO+HLT efficiency on rad. ~ 30-40%
 - + For comparaison : (di)muon channel $\epsilon_{trg}{\sim}80{-}90\%$
- Mass resolution driven by calorimeter resolution :
 - $\sigma_M(B \rightarrow X\gamma) \sim 90 \text{ MeV/c}^2$
 - For comparaison :
 - $\sigma_M(B \rightarrow hh) \sim 25 \text{ MeV/c}^2$
 - $\sigma_M(B \rightarrow J/\psi X) \le 10 \text{ MeV/c}^2$
- No constraint on vertexing from y + large photon multiplicity + limited mass resolution :
 - Large combinatorial background
 - partially rec'ed and peaking backgrounds
 - \rightarrow Tight selections have to be applied

LHCh

Radiative decays at LHCb

Experimental issues with radiative @ LHCb

- Due to trigger rate constraint versus large photoninduced combinatorial, the radiative decays in LHCb mostly rely on high pT photons :
 - L0 threshold in 2011(2012) : $\mathsf{E}_{\mathsf{T}}(\gamma)$ > 2.5-3.0 GeV
 - Typical LO+HLT efficiency on rad. ~ 30-40%
 - + For comparaison : (di)muon channel $\,\epsilon_{trg}{\sim}80{-}90\%$
- Mass resolution driven by calorimeter resolution :
 - $\sigma_M(B \rightarrow X\gamma) \sim 90 \text{ MeV/c}^2$
 - For comparaison :
 - $\sigma_M(B \rightarrow hh) \sim 25 \text{ MeV/c}^2$
 - $\sigma_M(B \rightarrow J/\psi X) \le 10 \text{ MeV/c}^2$
- No constraint on vertexing from γ + large photon multiplicity + limited mass resolution
 - Large combinatorial background
 - partially rec'ed and peaking backgrounds
 - \rightarrow Tight selections have to be applied

LHCh

Radiative decays : published analysis

 $B_{(s)} \rightarrow V\gamma$ relative branching ratio

 $\mathsf{B}_{s} \rightarrow \varphi(\mathsf{K}^{\scriptscriptstyle +}\mathsf{K}^{\scriptscriptstyle -})\gamma \ / \ \mathsf{B}^{\scriptscriptstyle 0} \rightarrow \mathsf{K}^{\star_{\scriptscriptstyle 0}}(\mathsf{K}^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -})\gamma$

• Branching fractions :

LHCh

[HFAG, 2012]

BR(B⁰→K^{*0}γ)=(4.33±0.15)x10⁻⁵ BR(B_s→ ϕ γ) =(5.7^{+2.1}_{-1.8})x10⁻⁵

• SM-predictions have large hadronic uncertainty mostly canceling in the ratio :

 $R=BR(K^{*0}\gamma)/BR(\varphi\gamma) = 1.0 \pm 0.2$

• LHCb result (1.0 fb⁻¹ - 2011 data only)

 $\frac{\mathcal{B}(B^0 \to K^{*0} \gamma)}{\mathcal{B}(B^0_s \to \phi \gamma)} = 1.23 \pm 0.06 \text{ (stat.)} \pm 0.04 \text{ (syst.)} \pm 0.10 \text{ (}f_s/f_d\text{)}$ $\mathcal{B}(B^0_s \to \phi \gamma) = (3.5 \pm 0.4) \times 10^{-5}$

Preliminary results on 0.37 fb⁻¹ published in Phys. Rev. D 85, 112013 (2012)

Vy branching fractions: backgrounds

- Generic background contamination :
 - Combinatorial background
 - Partially reconstructed $b \rightarrow s\gamma$ decays
 - Partially reconstructed b \rightarrow c (X+hh π^{0})
- Specific peaking backgrounds :
 - b-baryons $\Lambda_b \rightarrow \Lambda^*(K^-p)\gamma$
 - Charmless B_{d,s}→h⁺h⁻π⁰
 - Irreducible $b \rightarrow d\gamma : B_s \rightarrow K^{*0}\gamma$
- No trivial side-bands shape
 - Threshold effect due to different mass resolution in trigger and offline analysis

	Branching fraction	Relative contamination to	
	$(\times 10^{6})$	$B^0 \! ightarrow K^{*0} \gamma$	$B_s^0 ightarrow \phi \gamma$
$\Lambda^0_b \to \Lambda^* \gamma$	unknown	$(1.0 \pm 0.3)\%$	$(0.4 \pm 0.3)\%$
$B^0_s ightarrow K^{*0} \gamma$	1.26 ± 0.31 (theo. [20])	$(0.8\pm0.2)\%$	$O(10^{-4})$
$B^0 \rightarrow K^+ \pi^- \pi^0$	$35.9^{+2.8}_{-2.4}$ (exp. [4])	$(0.5 \pm 0.1)\%$	$O(10^{-4})$
$B^0_s ightarrow K^+ \pi^- \pi^0$	unknown	$(0.2\pm0.2)\%$	$O(10^{-4})$
$B^0_s ightarrow K^+ K^- \pi^0$	unknown	$\mathcal{O}(10^{-4})$	$(0.5\pm0.5)\%$
$B^+ \! ightarrow K^{*0} \pi^+ \gamma$	20^{+7}_{-6} (exp. [4])	$(3.3 \pm 1.1)\%$	$< 6 imes 10^{-4}$
$B^0 \! ightarrow K^+ \pi^- \pi^0 \gamma$	$41 \pm 4 \; (\exp. \; [4])$	$(4.5\pm1.7)\%$	$O(10^{-4})$
$B^+ \rightarrow \phi K^+ \gamma$	$3.5 \pm 0.6 \;(\mathrm{exp.}\;[4])$	$3 imes 10^{-4}$	$(1.8 \pm 0.3)\%$
$B \to K^{*0}(\phi) \pi^0 \mathbf{X}$	O(10%) [4]	few%	few%

Vy branching fractions: systematics

[Phys. Rev. D 85 (2012) 032008]

• Systematic uncertainty dominated by f_s/f_d (±8%)

from semi-leptonic $B_{u,d,s} \rightarrow D_{(s)} \mu v X$ and hadronic $B_{u,d,s} \rightarrow D_{(s)} h$

• Background model (±2%)

Contamination level and shape

Reconstruction and selection (±2%)

Trigger and selection efficiencies, Particle reconstruction & identification

	systematical uncertainty
r _{acc.}	0.4%
$r_{reco\&sel.}$	1.2%
$r_{\rm PID}$	1.2%
$r_{ m trigger}$	0.8%
Subtotal $\frac{\epsilon_{\mathrm{B}^0_{\mathrm{S}} \to \phi\gamma}}{\epsilon_{\mathrm{B}^0 \to \mathrm{K}^{*0}\gamma}}$	2.0%
$rac{\mathcal{B}(\phi ightarrow \mathrm{K}^+\mathrm{K}^-)}{\mathcal{B}(\mathrm{K}^{*0} ightarrow \mathrm{K}^+\pi^-)}$	1.0%
Background modelling	$^{+2.0}_{-1.8}\%$
Total	3%

Radiative decays : $A_{CP}(B^0 \rightarrow K^{*0}\gamma)$

Direct CP asymmetry in $B^0 \rightarrow K^{*0}\gamma$

SM-prediction :

[Phys. Rev. D72 (2005) 014013]

 $A_{CP} = -0.0061 \pm 0.0043$

A_{CP} enhanced in NP scenarii

Previous best measurement :

[BABAR, Phys. Rev. Lett. 84, 5283-5287]

 A_{CP} = -0.016 ± 0.022 ± 0.007

• LHCb result (1.0 fb⁻¹) :

[Nuclear Physics B, 867, 1-18 (2013)]

 $N_{B^0} + N_{\overline{B}^0} = 5300 \pm 100$ $A_{CP}(B^0 \to K^{*0}\gamma) = 0.008 \pm 0.017(stat) \pm 0.009(syst)$

$$\mathcal{A}_{CP}(B^0 \to K^{*0}\gamma) = \mathcal{A}_{\rm RAW}(B^0 \to K^{*0}\gamma) - \mathcal{A}_{\rm D}(K\pi) - \kappa \mathcal{A}_{\rm P}(B^0)$$

 $\rightarrow K^{*0}\gamma$): systematics

K⁺π⁻/K⁻π⁺ detection asymmetry

From charm $D^0 \rightarrow K\pi$ large control sample

• B production asymmetry

from large $B \rightarrow J/\psi K^*$ sample

$$A_{D}(K\pi) = \frac{\varepsilon(K^{-}\pi^{+}) - \varepsilon(K^{+}\pi^{-})}{\varepsilon(K^{-}\pi^{+}) + \varepsilon(K^{+}\pi^{-})} = (-1.0 \pm 0.2)\%$$

 $A_{P}(B) = \frac{R(\overline{B}) - R(B)}{R(\overline{B}) + R(B)} = (1.0 \pm 1.3)\%$

Background model

Contamination level, shape & CP asymmetry in various background components

Detector non-uniformity

Possible detector bias strongly reduced by switching regularly the magnet polarity

		correction $(\%)$	uncertainty (%)
Detection	$: -\mathcal{A}_{\mathrm{D}}(K\pi)$	+1.0	± 0.2
B^0 production	$: -\kappa \mathcal{A}_{\mathrm{P}}(B^0)$	-0.4	± 0.5
Background model	: $\Delta \mathcal{A}_{bkg}$	-0.2	± 0.7
Magnet polarity	: ΔA_M	+0.1	± 0.2
Total		+0.5	± 0.9

Radiative decays : prospects

- published results based on 1fb⁻¹ from 2011 data so far
 - $b \rightarrow s\gamma$ in neutral $B_{(s)} \rightarrow V\gamma$: $br(B_d \rightarrow K^{*0}\gamma)/br(B_s \rightarrow \varphi\gamma) \& A_{CP}(B_d \rightarrow K^{*0}\gamma)$
 - $b \rightarrow s\gamma^*(e^+e^-)$ at low $q^2 : BR(B_d \rightarrow K^{*0}ee)_{30 < Mee < 1000}$
 - First step toward $\gamma^*(\rightarrow ee)$ polarisation study
- Results demonstrate the LHCb ability to perform 'calorimetric' physics
 - exciting prospects for new observations and CP violation studies in modes with photons (and neutral pions)
- LHCb collected additional ~2fb⁻¹ in 2012 : new radiative decays under prospects
 - b→sγ in charged modes : B⁺→(K⁺h⁻h⁺)γ
 - direct A_{CP} in $B^+ \rightarrow K^{*0}\pi^+\gamma$, $B^+ \rightarrow \phi K^+\gamma$
 - photon polarisation from $B^+ \rightarrow K_1^+ \gamma$ analysis
 - $b \rightarrow s\gamma$ in baryons decays : $\Lambda_b \rightarrow \Lambda^*(\rightarrow pK)\gamma$
 - Branching Ratio measurement
 - suppressed b $\rightarrow d\gamma$: B⁰ $\rightarrow \rho^{0}(\rightarrow \pi\pi)\gamma$, B⁺ $\rightarrow a_{1}^{+}(\rightarrow \pi^{+}\pi^{-}\pi^{+})\gamma$
 - Branching Ratio measurement
 - A_{CP} in $B^+ \rightarrow (\pi^+ \pi^- \pi^+)\gamma$
 - $B_s \rightarrow \phi(\rightarrow K^+K^-)\gamma$
 - Effective $B_s \rightarrow \phi \gamma$ lifetime
 - Photon polarization from time-dependent decay rate

Radiative decays : helicity structure

Œ

- Investigating the photon helicity structure in $B^0 \rightarrow f^{CP}\gamma$
 - Right-handed photon in $b \rightarrow q\gamma$ is suppressed by (m_q/m_b) within SM
 - Time-dependent decay rate is sensitive to photon helicity

$$\Gamma(\overset{(-)}{B_q} \to f^{CP}\gamma) = |A|^2 e^{-\Gamma_q \tau} \Big[\cosh(\Delta\Gamma_q \tau/2) + \overset{(A^A_q)}{A_q} \sinh(\Delta\Gamma_q \tau/2) \pm C_q \cos(\Delta m_q \tau) \mp S_q \sin(\Delta m_q \tau) \Big]$$
$$A_s^A \approx \sin(2\psi) \qquad \tan \Psi = \Big| \frac{A(\overline{B_q} \to f^{CP}\gamma_R)}{A(\overline{B_q} \to f^{CP}\gamma_L)} \Big|$$

• $B_s \rightarrow \Phi(K^+K^-)\gamma$ is a promising channel for the extraction of $sin(2\Psi)$ • First step will be an untagged effective lifetime measurement

$$\Gamma_{B_{z}}(t) \propto \left|A\right|^{2} e^{-\Gamma_{z}t} \left[\cosh(\Delta\Gamma_{z}t/2) - \mathcal{A}^{\Delta}\sinh(\Delta\Gamma_{z}t/2)\right] = \left|A\right|^{2} e^{-\Gamma_{B_{z} \to q}}$$
$$\tau_{f} = \frac{\int_{0}^{\infty} t \langle \Gamma(B_{z}(t) \to f) \rangle dt}{\int_{0}^{\infty} \langle \Gamma(B_{z}(t) \to f) \rangle dt} = \frac{\tau_{B_{z}}}{1 - y_{z}^{2}} \left[\frac{1 + 2\mathcal{A}^{\Delta}y_{z} + y_{z}^{2}}{1 + \mathcal{A}^{\Delta}y_{z}}\right]$$

Main issue is the extraction of the proper-time acceptance and bias

11

• Investigating the photon helicity structure in $B^+ \rightarrow K^+_{res}(h_1h_2h_3)\gamma$ decay

 $2 \rightarrow 3$ -body

[E. Kou hep-ex/1011.6593]

[Gronau et al., hep-ph/0107254 (2002)

$$\frac{d\Gamma}{ds_{13}ds_{23}d\cos\Theta} = F(J_{\mu}(s_{13},s_{23}),\lambda_{\gamma},\cos\Theta)$$

Κ

 π

z

- Angular analysis
- Helicity amplitudes J_{μ} from Dalitz analysis

Radiative decays : helicity structure

• Investigating the photon helicity structure in $B^+ \rightarrow K^+_{res}(h_1h_2h_3)\gamma$ decay (con't)

Up-down asymmetry :

 $\frac{LHCb}{LHCb} \text{ LHCb prospects} : b \rightarrow d\gamma$

Œ

 V_{td} suppressed penguin

[HFAG, 2012]

BR(B⁰→ ρ^0 γ)=(8.6±1.5)x10⁻⁷

Branching ratio & asymmetry of exclusive $b \rightarrow (d,s)\gamma$ modes provide a direct constraint on UT

First observation

World best measurements in radiative Vy decays ...

 $\frac{B(B_d \to K^{*0}\gamma)}{B(B_s \to \Phi\gamma)} = 1.31 \pm 0.07(stat) \pm 0.04(syst) \pm 0.10(f_d / f_s)$ $B(B_s \to \Phi\gamma) = (3.3 \pm 0.3) \cdot 10^{-5}$ $A_{CP}(B^0 \to K^{*0}\gamma) = 0.008 \pm 0.017(stat) \pm 0.009(syst)$

... consistent with SM expectation

Other radiative B decays and photon polarization being investigated with 2012 data