LHC France 2-6 April 2013, Annecy

Top/W polarization in single top production from ATLAS and CMS

Xiaohu SUN, LPSC, Grenoble

To be presented

- W polarization measurement in helicity basis with single top events
 - Known as W helicity measurements
- CP-violation probe by the forward-backward asymmetry with W polarization in normal basis with single top events

- A few words on polarization
- What is polarization: a momentum is produced in a prefered direction, "polarized"
- How to study: use angles to probe the prefered (polarized) direction
 - As people say, the polarized angular distribution

What is Top/W polarization?

- t W^+ v, \bar{q}' b
- **Top/W polarization**: decaying children are produced in a polarized direction
- The left-handed Wtb vertex causes top/W polarization
- For top polarization, why use single top?
 - Single top is highly polarized
 - Top pair is not polarized (F. Déliot talk)
- For W polarization
 - with single top (this talk)
 - with top pair (F. Déliot talk)

- Goal:
 - Probe Wtb vertex: constraints on anomalous couplings beyond SM
 ³

Polarizations constrain Wtb interaction

- The most general effective Lagrangian describing **Wtb vertex** $\mathcal{L}_{tWb}^{anom.} = -\frac{g}{\sqrt{2}}\bar{b}\gamma^{\mu}(V_LP_L + V_RP_R)tW_{\mu}^- - \frac{g}{\sqrt{2}}\bar{b}\frac{i\sigma^{\mu\nu}q_{\nu}}{m_W}(g_LP_L + g_RP_R)tW_{\mu}^- + H.C$
 - SM: $V_L = V_{tb}$ almost 1, anomalous couplings $V_R g_L g_R$ equal to 0
 - Beyond SM: non-zero anomalous couplings
- How to constrain anomalous couplings?
 - CMS measured W polarization fractions in helicity basis to constrain anomalous couplings

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_l^*} = \frac{3}{8} (1 - \cos\theta_l^*)^2 F_L + \frac{3}{8} (1 + \cos\theta_l^*)^2 F_R + \frac{3}{4} \sin^2\theta_l^* F_0$$

• ATLAS measured the forward-backward asymmetry in W polarization with normal basis to probe CP-violation

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{\ell}^{T,N}} = \frac{3}{8} (1 + \cos\theta_{\ell}^{T,N})^2 F_{+}^{T,N} + \frac{3}{8} (1 - \cos\theta_{\ell}^{T,N})^2 F_{-}^{T,N} + \frac{3}{4} \sin^2\theta_{\ell}^{T,N} F_{0}^{T,N}$$

W polarization with $\theta^*/\theta^{\mathsf{T}}/\theta^{\mathsf{N}}$

• Traditionally, W polarization is measured with $\cos\theta^*$ in helicity basis

- The angle between lepton momentum in W boson rest frame and W boson momentum in top quark rest frame
- W helicity fractions are used to constrain anomalous couplings

- Paper [Nucl. Phys. B840 (2010) 349-378] explored new bases for W polarization measurements
 - $s_s = top spin axis$
 - q = W boson momentum in top rest frame
- Measure W polarization with
 - $\cos\theta^{T}$ in transverse basis
 - $\cos^{\Theta^{N}}$ in normal basis
 - ATLAS defines A^{N}_{FB} with $\cos^{N} \theta^{N}$
 - $\cos\theta = \cos\theta^{N}$ $A_z \equiv \frac{N_{\text{evt}}(\cos\theta > z) N_{\text{evt}}(\cos\theta < z)}{N_{\text{evt}}(\cos\theta > z) + N_{\text{evt}}(\cos\theta < z)}$ • z = 0

CP-violation probe with A^{N}_{FB}

 Analysis: Measure A^N_{FB} to constrain anomalous couplings and to probe CPviolation

$$\mathcal{L}_{tWb}^{anom.} = -\frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} (V_L P_L + V_R P_R) tW_{\mu}^{-} - \frac{g}{\sqrt{2}} \bar{b} \frac{i\sigma^{\mu\nu}q_{\nu}}{m_W} (g_L P_L + g_R) tW_{\mu}^{-} + H.C$$

$$A_{FB}^N = 0.64 P \operatorname{Im} g_R$$
[Nucl. Phys. B840 (2010) 349-378]

- A^{N}_{FB} is very sensitive to the imaginary part of g_{R} , for small values of g_{R} and taking $V_{L}=1$ $V_{R}=g_{L}=0$, one has the relation between the A^{N}_{FB} and Im g_{R} above
- CP violation can be probed by the non-zero imaginary part of anomalous coupling $g_{_{P}}$
- Therefore, a non-zero A^{N}_{FB} indicates CP-violation

Signal and backgrounds

Signal

- Exactly one lepton (CMS uses only muon)
- High missing transverse energy
- Exactly two jets
- Exactly one of the two jets is tagged

(J. Donini talk)

Data driven

- QCD multijet background
 - Electron channel: JetElectron model for the shape modeling, fit to E^{miss}, for normalization
 - Muon channel: Matrix method
- W+jets background
 - MC for modeling
 - Fit to control region for normalization

• QCD multijet background

- Normalization is given in the fit to transverse mass of W
- Model is given from data by inverting isolation requirements
- W+jets background
 - Normalization is given in the simultaneous fit with W helicity fraction extraction
 - Model is from control region (2jet0tag)

• Theoretical prediction and Monte carlo simulation

- s channel, Wt channel, top pair,
- Z+jets, Diboson(WW, WZ, ZZ)

Backgrounds

Result: CP-violation probe with A^N_{FR}

 $A_{\rm FB}^{\rm N}=0.64\,P\,\mathbb{I}(g_{\rm R})$

Result: W polarization in helicity basis

$$\begin{split} F_L^{\text{Comb.}} &= 0.293 \pm 0.069 (\text{stat.}) \pm 0.030 (\text{syst.}), \\ F_0^{\text{Comb.}} &= 0.713 \pm 0.114 (\text{stat.}) \pm 0.023 (\text{syst.}), \\ F_R^{\text{Comb.}} &= -0.006 \pm 0.057 (\text{stat.}) \pm 0.027 (\text{syst.}), \end{split}$$

[CMS PAS TOP-12-020]

The measured polarizations are used to set limits on Wtb anomalous couplings.

The best fit values

$$g_{_{\rm H}} = -0.014$$
 and $g_{_{\rm R}} = 0.007$

CMS

Conclusions

- ATLAS gave the first measurement on forward-backward asymmetry A^N_{FB} in W polarization with **normal basis** which constrains anomalous couplings in Wtb vertex and shows no evidence of CP-violation in top quark decay.
- CMS gave the first measurements on W polarization in **helicity basis** with single top topology which helps to constrain anomalous couplings in Wtb interaction.
- A little about the future
 - Determine the top polarization to improve A_{ER}^{N} measurement
 - Simultaneously fit to cross section and polarization observables
 - Perform a combination (top pair W helicity is available) including single top A^N_{FB} and W helicity to strongly constrain anomalous couplings
 - Explore polarizations in other bases (transverse basis)?

Thank you all!

Thanks to the meeting organizers for arranging everything and giving me the possibility to give the talk here!

Thanks to the people working on the LHC and to the people working on ATLAS and CMS for their excellent work!

Backup slides

Three production modes

Single top first observations

- First observations (s+t combined) at TEVATRON
 - D0 [Phys. Rev. Lett. 103, 092001 (2009)]
 - CDF [Phys. Rev. Lett. 103, 092002 (2009)]

Cross sections

• Cross sections at the center of mass energy X TeV

Collider	s-channel σ _{tb}	t-channel σ _{tqb}	tW-channel σ _{tw}	
Tevatron pp (1.96 TeV)	1.05 pb	2.08 pb	0.22 pb	
LHC pp (7 TeV)	4.63 pb	64.6 pb	15.7 pb	
LHC pp (8 TeV)	5.55 pb	87.1 pb	22.2 pb	

Collider (energy)	process	approx σ	
Tevatron pp (run II 1.96 TeV)	tī	~7 pb	
LHC pp (7 TeV)	tŦ	~165 pb	
LHC pp (8 TeV)	tt	~235 pb	
LHC pp (7 TeV)	single t (total)	~ 85 pb	
LHC pp (8 TeV)	single t (total)	~ 115 pb	

Top polarization

• The angle could be calculated with different decaying children from top: b quark, W boson, lepton, neutrino

CP-violation - event selection

Pretag sample

- Exactly one lepton with $p_{T} > 25 \text{ GeV}$
- Exactly two jets
 - Jet p₁ > 30 GeV, |η|<4.5
 - With crack removal $p_{T} > 35 \text{ GeV}$ at 2.75<| η |<3.5
- Retangular cut
 - MET > 30 GeV MTW > 30 GeV
- QCD rejection
 - $p_{\tau}(\text{lepton}) > 40 \mp (40/\pi 1)(\phi(\text{leading-jet}, \text{lepton}) \pm \pi) \text{ GeV}$

Tagged sample

- Exactly one btagged jets among the two jets
 - Central |η|<2.5
 - JetFitterCOMBNNc cut at 55% btagging efficiency

Extractly A^{N}_{FB} with tagged samples & | η (light jet)| > 2 & H_T>210 GeV & m_{top} within 150-190 GeV & | $\Delta\eta$ (light jet, b-jet)| > 1

CP-violation - $cos\theta^{N}$

[ATLAS-CONF-2013-032]

CP-violation - event yield

	Electron		Muon		
	Preselection	Selection	Preselection	Selection	
<i>t</i> -channel	1703 ± 9	262 ± 3	2053 ± 10	318 ± 4	
s-channel	114 ± 2	3 ± 0	147 ± 2	5 ± 0	
Wt-channel	574 ± 15	14 ± 3	700 ± 17	15 ± 2	
Top quark pair	4065 ± 13	114 ± 2	4740 ± 15	140 ± 2	
Diboson	121 ± 2	1 ± 0	142 ± 2	2 ± 0	
Z+jets	196 ± 9	4 ± 1	190 ± 7	3 ± 1	
W+HF jets	5226 ± 57	106 ± 8	7686 ± 65	137 ± 8	
W+light jets	1339 ± 58	15 ± 8	1919 ± 70	23 ± 6	
Multijet	1100 ± 500	20 ± 10	550 ± 280	6 ± 3	
Total expected	14400 ± 600	539 ± 19	18130 ± 290	649 ± 12	
S/B	0.13	0.95	0.13	0.96	
ATLAS data	14738	576	17966	691	

[ATLAS-CONF-2013-032]

CP-violation - uncertainties

		=
Source	$\Delta A_{ m FB}^{ m N}$	[ATLAS-CONF-2013-032]
<i>t</i> -channel generator	+0.024 / -0.024	_
$t\bar{t}$ generator and parton shower	+0.010 / -0.010	
Background normalisation	+0.008 / -0.008	
Jet energy resolution	+0.007 / -0.007	
Jet energy scale	+0.005 / -0.009	
Lepton id, reco., trigger and scale	+0.004 / -0.006	
PDFs	+0.003 / -0.003	
Unfolding	+0.003 / -0.003	
$E_{\mathrm{T}}^{\mathrm{miss}}$	+0.002 / -0.004	
b-tagging	+0.002 / -0.002	
W+jets shape	+0.001 / -0.001	
ISR/FSR	+0.001 / -0.001	
Jet reconstruction efficiency	+0.001 / -0.001	
Luminosity	+0.001 / -0.001	Lumi uncer input 1.8% 2011
Jet vertex fraction	<0.001 / <0.001	
Total systematic	+0.029 / -0.031	_

W helicity - Reweighting

- The weight $W(\cos \theta_{l,gen}^*; \vec{F}^{nonSM})$ $\frac{\rho^{nonSM}(\cos\theta^*_{l,gen})}{\rho^{SM}(\cos\theta^*_{l,gen})} = \frac{\frac{3}{8}(1-\cos\theta^*_{l,gen})^2 F_L^{nonSM} + \frac{3}{8}(1+\cos\theta^*_{l,gen})^2 F_R^{nonSM} + \frac{3}{4}\sin^2\theta^*_{l,gen} F_0^{nonSM}}{\frac{3}{8}(1-\cos\theta^*_{l,gen})^2 F_L^{SM} + \frac{3}{8}(1+\cos\theta^*_{l,gen})^2 F_R^{SM} + \frac{3}{4}\sin^2\theta^*_{l,gen} F_0^{SM}}$
- The pdf of $\cos\theta^*$ of signal after reconstruction

$$\rho(\cos \theta_{l,reco}^{*} | \vec{F}) \propto \int d\cos \theta_{l,gen}^{*} W(\cos \theta_{l,gen}^{*}; \vec{F}) \rho(\cos \theta_{l,gen}^{*} | \vec{F}^{SM}) \begin{array}{l} \mathcal{R}(\cos \theta_{l,gen}^{*}, \cos \theta_{l,reco}^{*}) \\ \text{Transfer matrix} \end{array}$$
Binned likelihood function
$$\mathcal{L}(\vec{F}) = \prod_{i \in bins} \frac{(n_{i}^{MC;\vec{F}})^{n_{i}^{data}}}{n_{i}^{data}!} \times e^{n_{i}^{MC;\vec{F}}}$$

$$n_{i}^{MC;\vec{F}} = n_{i}^{bkg-other} + N_{Wjets} \times \left(\beta_{i}^{Wjets} + f \times n_{i,rw}^{signal}\right) \begin{array}{l} \mathcal{R}(\cos \theta_{l,gen}^{*}, \cos \theta_{l,reco}) \\ \text{Parameters to be fit} \end{array}$$

Signal normalization is fixed to 1 according to cross section measurement

to be fit.

3 in total

CMS

W helicity - event selection

Event selection (only muon events are used in 7(8) TeV analysis)

- Exactly one isolated muon with p_{τ} >20(26)GeV and $|\eta|$ <2.1
- Exactly two jets with $p_{_{\rm T}}{>}30GeV$ and $|\eta|{<}4.5$ for 7TeV
 - Both jet with p_{τ} >60GeV for 8TeV
- MTW > 40(50) GeV
- Exactly one biagged jet (mistag rate ~0.1%)

W helicity - $cos\theta^*$

[CMS PAS TOP-12-020]

Process	Event yield at 7 TeV	Event yield at 8 TeV
single top (t)	910±4	954±5
single top (tW)	131±1	328±6
single top (s)	56 ± 1	64 ± 0
tī	867±5	$3541{\pm}11$
Diboson	38±1	29±1
W+jets	1953 ± 30	2133±22
DY+jets	145 ± 4	207±14
QCD	107±4	78±39
Total expected	4206±31	7334 ± 49
Data	4196	7401

[CMS PAS TOP-12-020]

W helicity - uncertainties

	$\sqrt{s} = 8 \mathrm{TeV}$		$\sqrt{s} = 7 \text{TeV}$	
Systematic source	ΔF_{L}	ΔF_0	ΔF_L	ΔF_0
JES	0.006	0.006	0.020	0.020
JER	0.008	0.003	0.015	0.010
unclustered energy	0.013	0.003	0.015	0.015
pileup	0.002	0.003	0.004	0.000
b-flavored scale factor	0.004	0.006	0.009	0.009
non-b-flavored scale factor	0.004	0.007	0.002	0.001
single-top generator	0.008	0.014	0.004	0.004
Q ² scale	0.009	0.012	0.040	0.007
m _{top}	0.005	0.006	0.010	0.010
PDF	0.005	0.005	0.000	0.000
t t normalization	0.002	0.003	0.008	0.008
QCD shape	0.002	0.002	0.004	0.004
W+jets shape	0.008	0.010	0.010	0.010
integrated luminosity	0.003	0.003	0.007	0.007
SM W-helicity reference	0.004	0.003	0.001	0.002
total systematic uncertainty (w/o generator)	0.022	0.021	0.054	0.035
total systematic uncertainty	0.024	0.026	0.054	0.035

[CMS PAS TOP-12-020]