

Direct photon measurements in ALICE

Alexis Mas for the ALICE collaboration

Outline

- I Physics motivations for direct photon measurements
- II Direct photon measurements in ALICE
 - i Conversion method with the TPC and the ITS ($p_{_{\rm T}}$ 0.5-14 GeV/c)
 - ii Isolation method with EMCal $(p_{_{\rm T}} 10-50 \, {\rm GeV/c})$
- **III Conclusions**

Direct photon production

In pp and Pb-Pb collisions

Compton scattering and annihilation

Independent of fragmentation functions (FF)

Their measurement constrains parton distribution functions (PDFs)

Fragmentation photons: production can be affected by parton energy loss in Pb-Pb

Only in Pb-Pb collisions

Thermal photons: from QGP or hadron gas:

Direct information on the hot and dense medium

Photons from interactions between hard partons and the medium:

- bremsstrahlung of partons
- $-q_{hard} + g_{QGP} \rightarrow q + \gamma$

Electromagnetic probes do not interact with the color field ldeal to study HI collisions

A medium thermometer: thermal photons

In heavy-ion collisions, low p_T direct photon production is dominated by QGP and hadron gas radiation => Access to medium properties

The "excess" seen at RHIC

Prediction for the LHC

Isolated direct photons: an ideal probe

Compton scattering is the dominant channel of **high p**_T isolated direct photon at LHC constraints on gluon PDF

Unlike hadron production, **high** \mathbf{p}_{T} isolated photon one is not affected by the medium created in HI collisions

ideal reference for PDF and FF modification studies

Direct photon measurement: an experimental challenge

Photon production is completely dominated by hadron decays

The $\pi^0 \to \gamma \gamma$ channel contributes for more than 80% of those decay photons

1st approach, **decay photon subtraction**:

$$\gamma_{dir} = \gamma_{inc} - \gamma_{decay}$$

Used in the conversion method

2nd approach, **direct photon identification**:

Used in the isolation method

1st measurement: Conversion method with TPC and ITS

Photon Conversion Method

Conversion probability in ALICE inner material = 8.5 % (in $|\eta| < 0.9$ to R=180 cm)

Remove other V0 sources $(K_s^0, \Lambda, \bar{\Lambda})$

- cut on opening angle
- cut on dE/dx of the tracks

Track selection (V0 candidates)

- Large impact parameter (avoid primary particles)
- Small DCA

Contamination from combinatorial background estimated from MC simulation

Analysis strategy

Direct photon contribution is obtained from inclusive spectrum by:

$$\gamma_{dir} = \gamma_{inc} - \gamma_{decay} = \gamma_{inc} \times (1 - \frac{\gamma_{decay}}{\gamma_{inc}})$$

With **double ratio**:

$$\frac{\gamma_{inc}}{\gamma_{decay}} \simeq \frac{\gamma_{inc}}{\pi^0} / \frac{\gamma_{decay}}{\pi_{param}^0}$$

From the cocktail generator (see next slide)

Measured from converted photons

Cocktail generator

A part from π^0 and η (in pp), **decay photon spectra are computed.**

Cocktail generator is based on the $m_{_{\rm T}}$ - scaling of π^0 spectrum

$$\mathbf{m}_{\mathrm{T}}$$
- scaling $(m_T = \sqrt{m^2 + p_T^2})$

Same shape of cross-section $f(m_T)$ of various mesons:

$$\frac{Ed^3\sigma_m}{dp^3} = \boxed{C_m} \times f(m_T)$$
Normalization factors

Considered mesons: π^0 , η , η' , ω , ϕ and ρ_0

Meson (C_m)	Mass	Decay Branch	B. Ratio
π^{0}	134.98	$\gamma\gamma$	98.789%
		$e^+e^-\gamma$	1.198%
η	547.3	$\gamma\gamma$	39.21%
		$\pi^+\pi^-\gamma$	4.77%
(0.48)		$e^+e^-\gamma$	$4.9 \cdot 10^{-3}$
$ ho^{0}$	770.0	$\pi^+\pi^-\gamma$	$9.9 \cdot 10^{-3}$
(1.0)		$\pi^{0}\gamma$	$7.9 \cdot 10^{-4}$
ω	781.9	$\pi^{0}\gamma$	8.5%
(0.9)		$\eta\gamma$	$6.5 \cdot 10^{-4}$
η'	957.8	$\rho^{0}\gamma$	30.2%
		$\omega\gamma$	3.01%
(0.25)		$\gamma\gamma$	2.11%

Results for pp collisions at $\sqrt{s} = 7 \text{ TeV}$

- No significative direct photon signal
- The result is compatible with NLO predictions

Results for Pb-Pb collisions at $\sqrt{SNN} = 2.76 \text{ TeV}$

- Above 4 GeV/c, in both peripheral and central collisions, results are consistent with NLO predictions
- We see a direct photon signal at low p_T in central collisions

Direct photons in central Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV

The direct photon yield is extracted from:

$$\gamma_{dir} = \gamma_{inc} \times (1 - \frac{\gamma_{decay}}{\gamma_{inc}})$$

Using the double ratio:

$$\frac{\gamma_{inc}}{\gamma_{decay}} \simeq \frac{\gamma_{inc}}{\pi^0} / \frac{\gamma_{decay}}{\pi_{param}^0}$$

- At p_T < 2.2 GeV/c, the spectrum is fitted with an exponential with a slope parameter: $T=304\pm51^{stat+syst}~{\rm MeV}$
- The excess is similar to the one measured at RHIC:

$$T = 221 \pm 19^{stat} \pm 19^{syst}$$
 MeV (Au-Au centrality 0-20%)

2nd measurement: Isolation method with EMCal

Photon identification with EMCal

I - Charged particle veto (CPV)

Selection of clusters that are not matching a track (matched if $\Delta \eta < 0.02 \& \Delta \phi < 0.03$)

II – Shower shape discrimination ($\lambda_0^2 < 0.27$) $\lambda_0^2 \text{ vs E}_T \text{ of clusters (after CPV)}$

 λ_0^2 cut provides a strong π^0 rejection between 5 and 60 GeV

Photon isolation

- The isolation technique strongly reduces the residual π^0 contamination
- Fragmentation photons are also strongly suppressed since they are surrounded by hadronic activity

Isolation method: signal extraction

Computation of ISO =
$$E_T^{Cone} - E_T^{UE}$$
 for:

- BG template: clusters with $0.5 < \lambda_0^2 < 2$ (normalized using distribution tails: ISO>15 GeV)
- Signal+BG: clusters with $0.1 < \lambda_0^2 < 0.3$

Yield is extracted substracting the BG ISO distribution from Signal + BG one

21

Isolated photons in pp collisions at \sqrt{s} = 7 TeV

- $E_{\scriptscriptstyle T}$ range covered is complementary with ATLAS and CMS measurements

	p _T range (GeV/c)	η range	reference
CMS	21-300 / 25–400	η < 1.45 / < 2.5	Phys.Rev.Lett.106 082001 /Phys.RevD84 052011
ATLAS	15-100 / 45-400 100-1000	η < 1.81 / < 2.37 η < 1.37	Phys.Rev.D83 052005/ Phys.Lett. B706 150-167 Moriond 2013
ALICE (in EMCal)	10 - 50	η < 0.3	ALICE

Conclusions

ALICE can measure direct photons using two complementary methods:

Conversion method (0.5 – 14 GeV)

- No significative direct photon signal in pp and Pb-Pb peripheral (consistent with NLO)
- Low p_T excess in central Pb-Pb is interpreted as thermal photon production with: $T=304\pm51^{stat+syst}~{
 m MeV}$

Isolation method (10 - 50 GeV)

- Measurement of raw isolated photons spectrum in pp at 7 TeV
- Outlook: extraction of direct photon cross-section (work ongoing)

GENERAL PERSPECTIVES

- Measurement in Pb-Pb and p-Pb with both approaches
- Measurement of the nuclear modification factor of direct photons