LHC France 2 O 13

QUARKONIUM:

PRODUCTIONS \& DECAYS

Emi Kou (LAL/In2p3)

LHC France 2013 Annecy

2-6 April 2013

Introduction

Charmonium spectrum: observation and prediction

Established charmonium below open-charm threshold (2mD)

Introduction

Charmonium spectrum: observation and prediction

-.8. Good agreement below the threshold
-. \int. Difficulties above the threshold \rightarrow appearance of exotic states

Quarkonium working group report: 1010.5827

State	m (MeV)	$\Gamma(\mathrm{MeV})$	$J^{P C}$	Process (mode)	Experiment (\# $\#$)	Year	Status
X (3872)	3871.52 ± 0.20	$\begin{gathered} 1.3 \pm 0.6 \\ (<2.2) \end{gathered}$	$1^{++} / 2^{-+}$	$\begin{aligned} & B \rightarrow K\left(\pi^{+} \pi^{-} J / \psi\right) \\ & p \bar{p} \rightarrow\left(\pi^{+} \pi^{-} J / \psi\right)+\ldots \\ & B \rightarrow K(\omega J / \psi) \\ & B \rightarrow K\left(D^{* 0} \bar{D}^{0}\right) \\ & B \rightarrow K(\gamma J / \psi) \\ & B \rightarrow K(\gamma \psi(2 S)) \end{aligned}$	Belle [85, 86] (12.8), BABAR [87] (8.6) CDF [88-90] (np), DØ [91] (5.2) Belle [92] (4.3), BABAR [93] (4.0) Belle [94, 95] (6.4), BABAR [96] (4.9) Belle [92] (4.0), BABAR [97, 98] (3.6) BABAR [98] (3.5), Belle [99] (0.4)	2003	OK
$X(3915)$	3915.6 ± 3.1	28 ± 10	$0 / 2^{?+}$	$\begin{aligned} & B \rightarrow K(\omega J / \psi) \\ & e^{+} e^{-} \rightarrow e^{+} e^{-}(\omega J / \psi) \end{aligned}$	Belle [100] (8.1), BABAR [101] (19) Belle [102] (7.7)	2004	OK
$X(3940)$	3942_{-8}^{+9}	37_{-17}^{+27}	$?^{?+}$	$\begin{aligned} & e^{+} e^{-} \rightarrow J / \psi\left(D \bar{D}^{*}\right) \\ & e^{+} e^{-} \rightarrow J / \psi(\ldots) \end{aligned}$	Belle [103] (6.0) Belle [54] (5.0)	2007	NC!
$G(3900)$	3943 ± 21	52 ± 11	1^{--}	$e^{+} e^{-} \rightarrow \gamma(D \bar{D})$	BABAR [27] (np), Belle [21] (np)	2007	OK
$Y(4008)$	4008_{-49}^{+121}	226 ± 97	1^{--}	$e^{+} e^{-} \rightarrow \gamma\left(\pi^{+} \pi^{-} J / \psi\right)$	Belle [104] (7.4)	2007	NC!
$Z_{1}(4050)^{+}$	4051_{-43}^{+24}	82_{-55}^{+51}	?	$B \rightarrow K\left(\pi^{+} \chi_{c 1}(1 P)\right)$	Belle [105] (5.0)	2008	NC!
$Y(4140)$	4143.4 ± 3.0	15_{-7}^{+11}	? ${ }^{+}$	$B \rightarrow K(\phi J / \psi)$	CDF [106, 107] (5.0)	2009	NC!
$X(4160)$	4156_{-25}^{+29}	139_{-65}^{+113}	? ${ }^{+}$	$e^{+} e^{-} \rightarrow J / \psi\left(D \bar{D}^{*}\right)$	Belle [103] (5.5)	2007	NC!
$Z_{2}(4250)^{+}$	- 42488_{-45}^{+185}	177_{-72}^{+321}	?	$B \rightarrow K\left(\pi^{+} \chi_{c 1}(1 P)\right)$	Belle [105] (5.0)	2008	NC!
$Y(4260)$	4263 ± 5	108 ± 14	1^{--}	$\begin{aligned} & e^{+} e^{-} \rightarrow \gamma\left(\pi^{+} \pi^{-} J / \psi\right) \\ & e^{+} e^{-} \rightarrow\left(\pi^{+} \pi^{-} J / \psi\right) \\ & e^{+} e^{-} \rightarrow\left(\pi^{0} \pi^{0} J / \psi\right) \end{aligned}$	$\begin{gathered} \text { BABAR }[108,109](8.0) \\ \text { CLEO [110] (5.4) } \\ \text { Belle [104] (15) } \\ \text { CLEO [111] (11) } \\ \text { CLEO [111] (5.1) } \end{gathered}$	2005	OK
$Y(4274)$	$4274.44_{-6.7}^{+8.4}$	32_{-15}^{+22}	$?^{?+}$	$B \rightarrow K(\phi J / \psi)$	CDF [107] (3.1)	2010	NC!
$X(4350)$	$4350.6_{-5.1}^{+4.6}$	$13.3_{-10.0}^{+18.4}$	$0,2^{++}$	$e^{+} e^{-} \rightarrow e^{+} e^{-}(\phi J / \psi)$	Belle [112] (3.2)	2009	NC!
$Y(4360)$	4353 ± 11	96 ± 42	1^{--}	$e^{+} e^{-} \rightarrow \gamma\left(\pi^{+} \pi^{-} \psi(2 S)\right)$	BABAR [113] (np), Belle [114] (8.0)	2007	OK
$Z(4430)^{+}$	$4443{ }_{-18}^{+24}$	107_{-71}^{+113}	$?$	$B \rightarrow K\left(\pi^{+} \psi(2 S)\right)$	Belle $[115,116]$ (6.4)	2007	NC!
$X(4630)$	4634_{-11}^{+9}	92_{-32}^{+41}	1^{--}	$e^{+} e^{-} \rightarrow \gamma\left(\Lambda_{c}^{+} \Lambda_{c}^{-}\right)$	Belle [25] (8.2)	2007	NC!

Quarkonium working group report: 1010.5827

Quarkonium working group report: 1010.5827

X(3872)
 Discovery in 2003

It is observed firstly in Belle in 2003 and confirmed by Babar, CDF, DO... Mass: $3872.0 \pm 0.6 \pm 0.5 \mathrm{MeV}$
Width: $<2.3 \mathrm{MeV}$
Discovery channel: $B \rightarrow K J / \psi \pi \pi$
Favoured quantum number: How to determine it?

X(3872)

Determining its spin parity

$\square C^{-}$is excluded from radiative decays
S. Olsen hep-ph/0407033

Observation of radiative decays is important to identify the charge conjugation. $X(3872) \rightarrow J / \psi \gamma$ is observed, thus $C=+1$!
$\square 1^{-+}, 2^{-+}$are ruled out from recoil mass distribution of $X \rightarrow J / \psi \rho$ $\left(1^{-+}, 2^{-+}\right) \rightarrow \rho J / \psi$ is only allowed for P-wave. Thus, the following result for the recoil mass distribution of $\pi \pi$ rules out this possibility:

$$
\chi^{2} / \text { dof }=43 / 39 \quad S \text {-wave. } \quad \chi^{2} / \text { dof }=71 / 39 \quad P \text {-wave }
$$

$\square 0^{++}$and 0^{-+}are ruled out from angular correlations
Angular correlations of $B \rightarrow K J / \psi \pi \pi$

$$
\begin{aligned}
& \frac{d \Gamma(B \rightarrow K J / \psi \pi \pi)}{\Gamma d \cos \theta_{l \pi}}=\frac{3}{4} \sin ^{2} \theta_{l \pi} \text { while exp. peaks at }\left|\cos \theta_{l \pi}\right| \simeq 1 \\
& \frac{d^{2} \Gamma(B \rightarrow K J / \psi \pi \pi)}{\Gamma d \cos \theta d \phi d \cos \psi}=\sin ^{2} \theta \sin ^{2} \psi \text { while exp. peaks at }|\cos \psi| \simeq 1
\end{aligned}
$$

X(3872)

Determining its spin parity

$\square C^{-}$is excluded from radiative decays
S. Olsen hep-ph/0407033

Observation of radiative decays is important to identify the charge conjugation. $X(3872) \rightarrow J / \psi \gamma$ is observed, thus $C=+1$!
$\square 1^{-+}, 2^{-+}$are ruled out from recoil mass distribution of $X \rightarrow J / \psi \rho$ $\left(1^{-+}, 2^{-+}\right) \rightarrow \rho J / \psi$ is only allowed for P-wave. Thus, the following result for the recoil mass distribution of $\pi \pi$ rules out this possibility:

X(3872)
 Discovery in 2003

It is observed firstly in Belle in 2003 and confirmed by Babar, CDF, D0... Mass: $3872.0 \pm 0.6 \pm 0.5 \mathrm{MeV}$
Width: $<2.3 \mathrm{MeV}$
Discovery channel: $B \rightarrow K J / \psi \pi \pi$
Favoured quantum number: 1++
Decay characteristics: large isospin breaking

$$
\frac{\operatorname{Br}\left(X \rightarrow \pi^{+} \pi^{-} \pi^{0} J / \psi\right)}{\operatorname{Br}\left(X \rightarrow \pi^{+} \pi^{-} J / \psi\right)}=1.0 \pm 0.5
$$

X(3872)

It's not charmonium ?!

Can $X(3872)$ be a conventional charmonium?
A possible 1^{++}is the excited state of P-wave charmonium, $\chi_{1 c}^{\prime}$. However, the predicted mass for $\chi_{1 c}^{\prime}$ is 3956 MeV , which is too high comparing to $X(3872)$. Moreover, the large isospin breaking decay is impossible for charmonium... So $X(3872)$ is unlikely a charmonium

- Various theoretical models as an interpretation of $X(3872)$:
\& $D^{0} \bar{D}^{* 0}$ Molecule (Deuson) Model N. A. Tornqvist PLB (2004)
$X(3872)$ might be a $D \bar{D}^{*}$ a D and \bar{D}^{*} loosely bounded by a π exchange.
\& Tetraquark Model L. Maiani, F. Piccinini, A. Polosa, V. Riquer, PRD (2005) $X(3872)$ is one of the mixing states of

$$
\begin{gathered}
X_{u}=[c u][\bar{c} \bar{u}], \quad X_{d}=[c d][\bar{c} \bar{d}] \\
\binom{X_{h}}{X_{l}}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{X_{u}}{X_{d}}
\end{gathered}
$$

Y(4260)

Discovery in 2005!

A resonance observed in initial-state radiation process $e^{+} e^{-} \rightarrow\left(\gamma_{\mathrm{IR}}\right) \pi^{+} \pi^{-} J / \stackrel{\dot{\psi}}{ }$ Babar collab., PRL 95 (2005) Confirmed by CLEO, Belle, BES.

Mass: $4259 \pm 8_{-6}^{+2} \mathrm{MeV}$
Width: $88 \pm 23_{-6}^{+2} \mathrm{MeV}$
Significance: 125 ± 23 events (8σ signal)
Also found in $B^{ \pm} \rightarrow K^{ \pm} \pi^{+} \pi^{-} J / \psi$ decays (3.1 σ signal)
Babar collab., hep-ex/0507090.
Decay characteristics: Decay to $D^{(*)} \bar{D}^{(*)}$ is suppressed?
Typical signature of hybrid!

Y(4260)
 Is it a Hybrid?

$(c \bar{c})+$ constituent gluon

$$
P=(-1)^{l_{g}+l_{c \bar{c}}} \quad C=(-1)^{l_{c \bar{c}}+s_{c \bar{c}}+1}
$$

Unnatural quantum number is possible e.g. $\left(0^{+-}, 1^{-+}, 2^{+-}\right)$
$>$ The 1^{--}meson can be composed in two ways, $\left(l_{g}, l_{c \bar{c}}, s_{c \bar{c}}\right)=$ ($0,1,1$) or by ($1,0,0$).
$>$ The state $\left(l_{g}, l_{c \bar{c}}, s_{c \bar{c}}\right)=(0,1,1)$ has been excluded due to its strong coupling to the continuum $D^{(*)} \bar{D}^{(*)}$ (the width exceeds 1 GeV). F. Iddir, S. Safir and O. Pene, PLB (1998)

$\mathbf{Y}(4260)$
 Is it a Hybrid?

$(c \bar{c})+$ constituent gluon

* The selection rule was first proven by using the chromoharmonic model
see e.g. A. Le Yaouanc, L. Oliver, O. Pene, J. C. Raynal and S. Ono, Z. Phys. C (1985)

$\mathbf{Z}_{\mathbf{c}}{ }^{ \pm}(\mathbf{3 9 0 0})$
 More surprise?!

symmetry $=$

Photo: IHEP Beïing

breaking

March 26, 201

BESIII collaboration catches new particle
A new particle spotted at China's Beijing Electron Positron Collider raises more questions than it answers.
-While BESIII investigates $Y(4260)$ in details, they found a decay of $Y(4260)$ into "charged charmonium" $\mathrm{Z}_{\mathrm{c}}{ }^{ \pm}(3900)$!
-There are theoretical papers indicating it might be the missing charged partner of $X(3872)!!!$

BESIII, I 303.5949
Faccini et al. I 303.6857
Voloshin, I 304.0380
Wang et al, I 303.6355
BELLE, 1304.0121

Conclusions

* Charmonium spectrum below threshold is well established and well understood while the above threshold is more puzzling.
* $\mathrm{X}(3872)$ and $\mathrm{Y}(4260)$ are rather well-established exotic states: they have decay characteristics which is not possible from the conventional charmonium.
* LHC study of XYZ states will be useful to further clarify the situation.

Suppression of S-wave final state

The spacial overlap of $H_{B} \rightarrow D \bar{D}$ can be written in terms of three independent parameters $\pm p_{f}$ ($D(\bar{D})$ meson mom.), $p_{c \bar{c}}$ (reltv. mom. between $c-\bar{c}$), k (reltv. mom. between $c \bar{c}-g$)

$$
I=\int \frac{d p_{\vec{c} \bar{c}} d \vec{k}}{\sqrt{2 \omega}(2 \pi) 6} d \Omega_{f} \Psi_{l_{H}}^{m_{H}}\left(\vec{p}_{c \bar{c}}, \vec{k}\right) \Psi_{l_{B}}^{m_{B}{ }^{*}\left(\vec{p}_{B}\right) \Psi_{l_{C}}^{m_{C}}\left(\vec{p}_{C}\right) Y_{l}^{m *}\left(\Omega_{f}\right)}
$$

Let us consider the change of variable

$$
\vec{k} \rightarrow-\vec{k} \quad \longrightarrow\left(\vec{p}_{B} \leftrightarrow-\vec{p}_{C}\right) .
$$

- The hybrid wave function is odd in k since $l_{g}=1$.
$>$ In the case of S-wave final mesons, the wave functions are even in p_{B} and p_{C}. Thus, their product remains unchanged.
$>$ The spherical harmonic function $Y_{l}^{m *}\left(\Omega_{f}\right)$ is a function of the unit vector \widehat{p}_{f} and is thus unchanged.

The decay $H_{B} \rightarrow D^{(*)} \bar{D}^{(*)}$ is forbidden in any potential model.

