Hard probes in Heavy-Ion collisions with CMS (by Alice)

erc

But only Electroweak bosons

LHC France 2013, Annecy

Alice Florent On behalf of the CMS collaboration

Hard processes in QCD medium

Electro + weak bosons (through their leptonic decays) are medium-blind

- References for modified processes
- Help to constrain initial state

Electro + weak bosons (through their leptonic decays) are medium-blind

- References for modified processes
- Help to constrain initial state

$$Z \rightarrow \mu^+ \mu^- 1$$

PAS-HIN-12-008

Electro + weak bosons (through their leptonic decays) are medium-blind

- References for modified processes
- Help to constrain initial state

$$Z \rightarrow \mu^{+} \mu^{-} 1$$

PAS-HIN-12-008
 $W \rightarrow \mu^{\pm} \nu 2$
PLB 715 (2012) 66

Electro + weak bosons (through their leptonic decays) are **medium-blind**

- References for modified processes
- Help to constrain initial state

$$Z \rightarrow \mu^+ \mu^- 1$$

PAS-HIN-12-008

W
$$\rightarrow \mu^{\pm} \nu$$
 2
PLB 715 (2012) 66

Electro + weak bosons (through their leptonic decays) are **medium-blind**

- References for modified processes
- Help to constrain initial state

Electro + weak bosons (through their leptonic decays) are medium-blind

- References for modified processes
- Help to constrain initial state

How to measure if a probe is affected by the medium?

 $\mathbf{R}_{\mathbf{A}\mathbf{A}}$ = ratio between the production yield in PbPb and the production yield in pp, normalized by the number elementary collisions

$$R_{AA} = \frac{N_{AA}}{N_{pp} \times N_{coll}}$$

 N_{coll} = number of elementary collisions

How to measure if a probe is affected by the medium?

 $\mathbf{R}_{\mathbf{A}\mathbf{A}}$ = ratio between the production yield in PbPb and the production yield in pp, normalized by the number elementary collisions

$$R_{AA} = \frac{N_{AA}}{N_{pp} \times N_{coll}}$$

 N_{coll} = number of elementary collisions

R_{AA} ~ 1 Non-modified

1. Z → μ⁺ μ⁻

Dimuon invariant mass spectrum

Z boson picture

Invariant mass

Data sample Pb+Pb collisions @ $\sqrt{s} = 2.76$ TeV

Invariant mass

Data sample Pb+Pb collisions @ $\sqrt{s} = 2.76$ TeV

R_{AA} deduce from powheg

CMS-PAS-HIN-12-008

Centrality independence

R_{AA} deduce from powheg

CMS-PAS-HIN-12-008

100 dN/dy (|y|<2.0) / T_{AA} (pb) CMS PbPb Preliminary 150.0 μb^{-1} at $\sqrt{s_{NN}} = 2.76$ TeV 90 80F 70 60-50E 40E CMS 30E 20 10 10 00 Systematic Uncertainty POWHEG (5% uncertainties) 50 100 150 200 250 300 350 400 N_{part}

 $dN_{AA}/T_{AA} = d\sigma_{pp} \times dN_{AA}/dN_{pp} \times N_{coll}$

Centrality independence

R_{AA} deduce from powheg

CMS-PAS-HIN-12-008

Yield of Z as a function of transverse momentum

Distribution matches POWHEG No deviation from pp

Yield of Z as a function of transverse momentum

Distribution matches POWHEG No deviation from pp

Yield of Z as a function of transverse momentum

Distribution matches POWHEG No deviation from pp

Yield of Z as a function of transverse momentum

Distribution matches POWHEG No deviation from pp

 X-jet
 GodZMuPair 0, mas = 90.69 eta = -0.477 ph = 1.280

 yt = 68.96 eta = -0.477 ph = 1.280
 Wuon 1, mas = 90.69 eta = -0.477 ph = 1.280

 yt = 88.66 eta = -0.380 ph = 2.736
 Muon 0, mas = 90.69 eta = -0.477 ph = 1.280

 $\label{eq:pt} \begin{array}{l} Z \ p_T \ used \ as \ estimate \ of \ the \ jet \ p_T \\ Cleaner \ (no \ fragmentation) \ than \ \gamma \ + \ jet \ but \\ less \ statistics \end{array}$

Conclusion 1/3

1. $Z \rightarrow \mu^+ \mu^-$

- Proportional to binary collisions
- Independent of centrality collision
- Could serve to estimate the initial energy of the away-side parton

1

Official picture

CODREX 202. Al rights reserved

Official picture

Non-official picture

when you google "W boson" you get :

Non-official picture

when you google "W boson" you get :

11

revisionworld ()

µ and v

PLB 715 (2012) 66

μp_{T}

 $p_T = -\sum \vec{p}_T$

Simple missing p_T from tracks

Signal already visible in muon P_T spectrum

Transverse mass

$$m_T = \sqrt{2p_T^{\mu} \not\!\!\!/_T (1 - \cos\phi)}$$

Compatible distribution W signals between PbPb, pp and MC

Transverse mass

$$m_T = \sqrt{2p_T^{\mu} \not\!\!\!/_T (1 - \cos\phi)}$$

Compatible W signals in PbPb and pp

Transverse mass

$$m_T = \sqrt{2p_T^{\mu} \not\!\!/_T (1 - \cos\phi)}$$

	PbPb	рр
W +	275	301
w -	264	165

Compatible W signals in PbPb and pp

• Why different yield for W⁺ and W⁻?

$$\underbrace{\begin{pmatrix} \mathbf{p} \\ \mathbf{p} \end{pmatrix}}^{\mathbf{u}} \xrightarrow{\mathbf{d}} \underbrace{\begin{pmatrix} \mathbf{q} \\ \mathbf{p} \end{pmatrix}}^{\mathbf{d}} \underbrace{\mathbf{u}}^{\mathbf{d}} \xrightarrow{\mathbf{W}}^{\mathbf{d}} \underbrace{\mathbf{u}}^{\mathbf{d}} \xrightarrow{\mathbf{W}}^{\mathbf{d}} \underbrace{\mathbf{d}}^{\mathbf{u}} \xrightarrow{\mathbf{W}}^{\mathbf{u}} \underbrace{\mathbf{U}} \xrightarrow{\mathbf{W}}^{\mathbf{u}} \underbrace{\mathbf{U}} \underbrace{\mathbf{U}} \xrightarrow{\mathbf{W}}^{\mathbf{u}} \underbrace{\mathbf{U}} \underbrace{\mathbf{U}} \xrightarrow{\mathbf{W}}^{\mathbf{u}} \underbrace{\mathbf{U}} \underbrace{\mathbf{U}} \underbrace{\mathbf{U}} \xrightarrow{\mathbf{W}}^{\mathbf{u}} \underbrace{\mathbf{U}} \underbrace{\mathbf{U$$

pp collisions = more W⁺ than W⁻ Pb+Pb collisions = more W⁻ than W⁺

• Why different yield for W⁺ and W⁻?

$$\underbrace{\begin{pmatrix} P \\ P \end{pmatrix}}^{d} \longrightarrow \underbrace{\overset{d}{}}_{P} \begin{pmatrix} P \\ P \end{pmatrix} & d\bar{u} \longrightarrow W^{+} \\ d\bar{u} \longrightarrow W^{-}$$

pp collisions = more W⁺ than W⁻ Pb+Pb collisions = more W⁻ than W⁺

• Then why we have more W+ than W- in Pb-Pb?

- 1. W^{\pm} are boosted in the direction of valence quark Spin conservation:
- 1. μ^+ boosted back to the W⁺
- 2. μ^{-} boosted along with the W⁻
 - Muons charge asymmetry

Centrality independence and R_{AA}

Not from powheg but data at 2.76 TeV

Centrality independence and R_{AA}

15

 $dN_{AA} / T_{AA} = d\sigma_{pp}$

Not from powheg but data at 2.76 TeV

Not from powheg but data at 2.76 TeV

Conclusion (2/3)

1. $Z \rightarrow \mu^+ \mu^-$

- Proportional to binary collisions
- Independent of collision centrality
- Could serve to estimate the initial energy of the away-side parton

16

2. $W^{\pm} \rightarrow \mu^{\pm} \nu$

- Proportional to binary collisions
- Independent of collision centrality
- Strong isopsin effect (expected)

Last part: photons

photons-jet

PLB 718 (2013) 773

Look at a photon $p_T > 60$ and a jet $p_T > 30$ GeV/c on the opposite side

a) Opposite jets above threshold are 14% less energetic in PbPb than pp

photons-jet

PLB 718 (2013) 773

Look at a photon $p_T > 60$ and a jet $p_T > 30$ GeV/c on the opposite side

Conclusion 3/3

1. $Z \rightarrow \mu^+ \mu^-$

- Proportional to binary collisions
- Independent of collision centrality
- Could serve to estimate the initial energy of the away-side parton

2. $W^{\pm} \rightarrow \mu^{\pm} \nu$

- Proportional to binary collisions
- Independent of collision centrality
- Strong isopsin effect (expected)

3. Isolated photon

- Proportional to binary collisions
- Independent of collision centrality

Conclusion 3/3

- 1. $Z \rightarrow \mu^+ \mu^-$
- Proportional to binary collisions
- Independent of collision centrality
- Could serve to estimate the initial energy of the away-side parton

2. $W^{\pm} \rightarrow \mu^{\pm} \nu$

- Proportional to binary collisions
- Independent of collision centrality
- Strong isopsin effect (expected)

3. Isolated photon

- Proportional to binary collisions
- Independent of collision centrality

