

LHC France 2013

Annecy

Charged-particle multiplicity in Pb-Pb at 2.76 TeV and p-Pb at 5.02 TeV with ALICE at the LHC

Maxime GUILBAUD

On behalf of the ALICE collaboration

LHC France 2013

Annecy

Overview

Motivations

The ALICE experiment

Pb-Pb results

- p-Pb results
- Conclusion

ED 52 - PHAST

Physique & Astrophysique de Lyon

Ecole doctorale

Charged-particle multiplicity in Pb-Pb & p-Pb with ALICE at LHC

Motivations

dN/dŋ is a global observable which reflects the initial conditions of the colliding system

dN/dŋ is a global observable which reflects the initial conditions of the colliding system

- dN/dη is related to:
 - Final-state distribution of available energy and underlying dynamics of particle production mechanisms (energy density and entropy of the system)
 - Entropy production in the early stage of heavy ion (HI) collisions
 - "Underlying event" for hard-probes signals

dN/dη is a global observable which reflects the initial conditions of the colliding system

- dN/dη is related to:
 - Final-state distribution of available energy and underlying dynamics of particle production mechanisms (energy density and entropy of the system)
 - Entropy production in the early stage of heavy ion (HI) collisions
 - "Underlying event" for hard-probes signals
- dN/dη, provides constraints on theoretical models and, with lower energy data, reveals evolution of particle production with available energy

• dN/dη is a global observable which reflects the initial conditions of the colliding system

- dN/dη is related to:
 - Final-state distribution of available energy and underlying dynamics of particle production mechanisms (energy density and entropy of the system)
 - Entropy production in the early stage of heavy ion (HI) collisions
 - "Underlying event" for hard-probes signals
- dN/dη, provides constraints on theoretical models and, with lower energy data, reveals evolution of particle production with available energy
- dN/dη, over a wide pseudo-rapidity coverage, allows one to probe longitudinal scaling

dN/dη is a global observable which reflects the initial conditions of the colliding system

- dN/dη is related to:
 - Final-state distribution of available energy and underlying dynamics of particle production mechanisms (energy density and entropy of the system)
 - Entropy production in the early stage of heavy ion (HI) collisions
 - "Underlying event" for hard-probes signals
- dN/dη, provides constraints on theoretical models and, with lower energy data, reveals evolution of particle production with available energy

• dN/dη, over a wide pseudo-rapidity coverage, allows one to probe longitudinal scaling

VIOLATION

CONSERVATION

• W. Busza, J. Phys. G 35,

A. Bialas, A. Bzdak, R.

Peschanski, Phys. Lett.

044040 (2008)

B 665, 35 (2008)

- P. Brigueira, J. Dias de Deus, C.Pajares, Phys. Rev. C 75, 054908 (2007)
- J. Cleymans, J. Strumpfer, L.Turko, Phys. Rev. C 78, 01901 (2008)

The ALICE experiment

Charged-particle multiplicity in Pb-Pb & p-Pb with ALICE at LHC

The ALICE experiment

The ALICE detectors:

- The relevant detectors for this talk are:
 - The Silicon Pixel Detector (SPD): 2 first layers of the Inner Tracking System (ITS)

The ALICE experiment

The ALICE detectors:

- The relevant detectors for this talk are:
 - The Silicon Pixel Detector (SPD): 2 first layers of the Inner Tracking System (ITS)
 - The VZERO & The Forward Multiplicity Detector (FMD)

The ALICE experiment

The ALICE detectors:

- The relevant detectors for this talk are:
 - The Silicon Pixel Detector (SPD): 2 first layers of the Inner Tracking System (ITS)
 - The VZERO & The Forward Multiplicity Detector (FMD)
 - The Zero Degree Calorimeter (ZDC)
 - ZNs (neutrons)+ZPs (protons) at 114m on both sides of the Interaction Point (IP)
 - Electromagnetic calorimeter (ZEM) on A side at 7.5m from the IP

Charged-particle multiplicity in Pb-Pb & p-Pb with ALICE at LHC

Nominal collisions:

- SPD results using collisions at nominal vertex (light gray band)
 - dN/dη SPD tracklet results are given in an extended range in η (|η|<2) with respect to first ALICE published paper PRL 106, 032301 (2011) on this measurement.
 - To reach this pseudo-rapidity range, the analysis was performed in 3 bins along Z axis to enlarge the acceptance of SPD (|Z_{vtx}|<13)

Analysis technique

Satellite collisions:

The LHC RF is 400 MHz \rightarrow RF bucket separated by 2.5 ns

- **Nominally**, beam bunches filled in one out of ten buckets (separation by a multiple of 25 ns)
- Small fraction of the beam captured in unwanted RF buckets \rightarrow satellite bunches
- Satellite bunches give satellite collisions by crossing nominal bunch every 37.5 cm

Analysis technique

Satellite collisions:

The LHC RF is 400 MHz \rightarrow RF bucket separated by 2.5 ns

- **Nominally**, beam bunches filled in one out of ten buckets (separation by a multiple of 25 ns)
- Small fraction of the beam captured in unwanted RF buckets \rightarrow satellite bunches
- Satellite bunches give satellite collisions by crossing nominal bunch every 37.5 cm
- Due to zero crossing angle, data from a significant number of satellite collisions were recorded by the ALICE experiment in 2010
 - Low material budget between 75 to 337.5 cm
 - The pseudo-rapidity coverage of each detector changes with every vertex

Analysis technique: η coverage

 VZERO-A η coverage for collisions at main IP:

Ring	0	4.5<η< 5.1
	1	3.9< q <4.5
	2	3.4<ŋ<3.9
	3	2.8 <η<3.4

 FMD1 & FMD2 η coverage at main IP:

FMD1	3.7<η< 5.0
FMD2	1.7 <η<3.7

Analysis technique: η coverage

• FMD: -5.0 < η < 5.5

Analysis technique: Event selection

- Satellite collisions every 2.5 ns
- ZDC time resolution allows to discriminate collisions coming from different satellite bunches:
 - Collision between nominal bunches (black circle)
 - Satellite bunch from A side + nominal bunch from C side (red circles)
 - Satellite bunch from C side + nominal bunch from A side (blue circles)

Analysis technique: Centrality selection

- Glauber model was used to determine the number of participants
 - ZDC energy ~ < N_{spect} >
 - ZEM amplitude ~ < N_{part} >
- Estimator calibrated on VZERO at nominal IP
 - ZDC response weakly dependent on the vertex position (far from the IP) with respect to VZERO
 - This estimator works only for the most central events (0-30%) due to nuclear fragment production in peripheral events

Results: FMD and VZERO comparison

- Comparison between SPD, FMD and VZERO*
 - SPD: -2 < η < 2</p>
 - FMD: -5 < η < 5.5
 - VZERO: -3 < η < 5.25

 Good agreement between FMD and VZERO

*: The ALICE Collaboration, arXiv:1304.0347 [nucl-ex]

Results: Combined results

Results are combined*

- Mean weighted by each detector's syst. error
- Common sources of syst. errors are then added in quadrature
- Stat. error smaller than marker size
- Syst. error: 2-6%

*: The ALICE Collaboration, arXiv:1304.0347 [nucl-ex]

Results: Combined results

Results are combined*

- Mean weighted by each detector's syst. error
- Common sources of syst. errors are then added in quadrature
- Stat. error smaller than marker size
- Syst. error: 2-6%
- Good agreement with ATLAS & CMS in the central region

*: The ALICE Collaboration, arXiv:1304.0347 [nucl-ex]

Results: Combined results

Results are combined*

- Mean weighted by each detector's syst. error
- Common sources of syst. errors are then added in quadrature
- Stat. error smaller than marker size
- Syst. error: 2-6%
- Good agreement with ATLAS & CMS in the central region
- A double gaussian function fits well the data

*: The ALICE Collaboration, arXiv:1304.0347 [nucl-ex]

13

Three MC based models are compared with ALICE results

AMPT

14

- Three MC based models are compared with ALICE results
 - AMPT

14

UrQMD model

 UrQMD/AMPT: fails to reproduce the overall amplitude and shape of the pseudo-rapidity density

- Three MC based models are compared with ALICE results
 - AMPT
 - UrQMD model
 - Color Glass Condensate (CGC) based model
- UrQMD/AMPT: fails to reproduce the overall amplitude and shape of the pseudo-rapidity density

- Three MC based models are compared with ALICE results
 - AMPT
 - UrQMD model
 - Color Glass Condensate (CGC) based model
- UrQMD/AMPT: fails to reproduce the overall amplitude and shape of the pseudo-rapidity density
- CGC: reproduces the shape & the amplitude, but for a restricted η range

Results: $dN/d\eta$ scaling as a function of $<N_{part}>$

- The dN/dη scaling as a function of <N_{part} > is given in 5 pseudo-rapidity bins
 - Complementary results to those previously published by the ALICE Collaboration*
 - The primary charged particle density per participant pair for the most central events

*: ALICE Collaboration, Phys. Rev. Lett. 106 (2011) 032301

Results: dN/dŋ scaling as a function of <N part

- The dN/dη scaling as a function of $\langle N_{part} \rangle$ is given in 5 pseudo-rapidity bins
 - Complementary results to those previously published by the ALICE Collaboration*
 - The primary charged particle density per participant pair for the most central events
- Related to the entropy production at the collision
- $dN_{\rm ch}/d\eta/(\langle N_{\rm part}\rangle/2)$ 6-5 4- $4.5 < \eta < 5.5$ 3- $3.5 < \eta < 4.5$ $2.5 < \eta < 3.5$ 2- $1.5 < \eta < 2.5$ 0.5 < n < 1.51- $-0.5 < \eta < 0.5$ from ALICE PRL 106 (2011) 032301 0-300 50 100 150 200 250 350 0 $\langle N \rangle$ part '

 \rightarrow same trend in each bin, no clear η dependence

10

0

8-

7-

*: ALICE Collaboration, Phys. Rev. Lett. 106 (2011) 032301

15

400

Results: Longitudinal scaling

- Results compared to BRAHMS & PHOBOS Au-Au data at 62 and 200 GeV at RHIC
 - dN/dη distributions normalized by <N_{part}>/2
 - dN/dη distributions shifted by y_{beam}
 - Very high rapidity region is extrapolated with a linear function

16

Results: Longitudinal scaling

- Results compared to BRAHMS & PHOBOS Au-Au data at 62 and 200 GeV at RHIC
 - dN/dη distributions normalized by <N_{part}>/2
 - dN/dη distributions shifted by y_{beam}
 - Very high rapidity region is extrapolated with a linear function
- The linear extrapolation shows that ALICE, BRAHMS and PHOBOS data are consistent

Results: Longitudinal scaling

- Measurement consistent with longitudinal scaling within extrapolation errors at the LHC
 - The shape dN/dŋ distribution does not depend on the colliding energy at forward rapidity

17

Results: Longitudinal scaling

- Measurement consistent with longitudinal scaling within extrapolation errors at the LHC
 - The shape dN/dŋ distribution does not depend on the colliding energy at forward rapidity
 - Also seen for v₂ longitudinal scaling

Results: dN/dy distribution

- dN/dy is extracted by performing a Jacobian transformation from η to
 - **y** • $\frac{dN}{dy} = \frac{1}{\langle J(\eta) \rangle} \frac{dN}{d\eta}$
 - Measured particle ratio and p_T distribution for π[±], κ[±], p and p
 in ALICE* are used (|y|<0.5)
 - Syst. errors included:
 - A linear softening of the p_τ spectra with increasing |η|
 - Variations in the particle yields

*: B. Abelev et al. (ALICE Collaboration) Phys. Rev. Lett. 109, 252301 (2012)

Results: dN/dy distribution

- Results consistent with a plateau for within |η|<1.5
 - Favored by a Bjorken hydrodynamical picture
 → boost invariance
 - Results also well described by Gaussian fits

Results: dN/dy distribution

- Results consistent with a plateau for within |η|<1.5
 - Favored by a Bjorken hydrodynamical picture
 → boost invariance
 - Results also well described by Gaussian fits
- Width of the distribution larger than expected from Landau hydrodynamics

Results: dN/dy distribution

- Results consistent with a plateau for within |η|<1.5
 - Favored by a Bjorken hydrodynamical picture
 → boost invariance
 - Results also well described by Gaussian fits
- Width of the distribution larger than expected from Landau hydrodynamics
- Deviations with respect to lower energy suggest a significant change in dynamics at LHC energies

Results: Total number of charged particles N

N_{ch} is estimated with a double gaussian fit function and a linear extrapolation at high rapidity for each centrality bin

- Stat. error is smaller than the marker size
- Syst. errors includes the uncertainty on the extrapolation: 2-3 %

Results: Total number of charged particles N

N_{ch} is estimated with a double gaussian fit function and a linear extrapolation at high rapidity for each centrality bin

- Stat. error is smaller than the marker size
- Syst. errors includes the uncertainty on the extrapolation: 2-3 %
- The total number of charged particles increases with the number of participants
 - Fraction of particle in extrapolation: 13%

Results: Total number of charged particles N

N_{ch} is estimated with a double gaussian fit function and a linear extrapolation at high rapidity for each centrality bin

- Stat. error is smaller than the marker size
- Syst. errors includes the uncertainty on the extrapolation: 2-3 %
- The total number of charged particles increases with the number of participants
 - Fraction of particle in extrapolation: 13%

• PHOBOS data scaled by $\frac{\langle \frac{N_{ch}}{N_{part}}\rangle_{LHC}}{\langle \frac{N_{ch}}{N_{part}}\rangle_{RHIC}}=2.87$

Results: N_{ch} scaling as a function of In²s_{NN}

 N_{ch} scaling is computed in ALICE and compared with other experiment result as a function of In²(s_{NN})

Results: N_{ch} scaling as a function of In²s_{NN}

- N_{ch} scaling is computed in ALICE and compared with other experiment result as a function of In²(s_{NN})
 - The trend was observed to be linear from AGS to RICH
 → not valid at LHC energies

Results: N_{ch} scaling as a function of In²s_{NN}

- N_{ch} scaling is computed in ALICE and compared with other experiment result as a function of ln²(s_{NN})
 - The trend was observed to be linear from AGS to RICH
 → not valid at LHC energies
 - 2 fit functions are tested
 - Adding a power law scaling of the dN/dη at midrapidity to the linear trend → overestimate

Results: N_{ch} scaling as a function of $\ln^2 s_{N}$

- N_{ch} scaling is computed in ALICE and compared with other experiment result as a function of In²(s_{NN})
 - The trend was observed to be linear from AGS to RICH
 → not valid at LHC energies
 - 2 fit functions are tested
 - Adding a power law scaling of the dN/dη at midrapidity to the linear trend → overestimate
 - Fit with a function where the dN/dη at midrapidity scales as a power law & extends over an η range growing as ln(s_{NN})

$$dN/d\eta|_{\eta=0} \sim s_{NN}^{0.15} \& \sigma(dN/d\eta) \sim \ln(s_{NN})$$

Charged-particle multiplicity in Pb-Pb & p-Pb with ALICE at LHC

Results: $dN_{ch}/d\eta$ (NSD) as a function of η^{\dagger}

*: ALICE Collaboration, Phys. Rev. Lett. 110, 032301 (2013)

Results: $dN_{ch}/d\eta$ (NSD) as a function of η

- Analysis made with SPD*
 - Same as in Pb-Pb → tracklet analysis
 - NSD event sample
 - Results shifted by Δy_{NN}=0.465 to take into account the boost due to different incident energy between p & Pb
 - Syst. Error ~ 3.8%
- Asymmetry between p & Pb hemispheres clearly visible
 - $dN/d\eta_{lab}|_{|\eta|<0.5} = 17.35 \pm 0.67(syst.)$
 - $dN/d\eta_{cms}$ = 16.81 ± 0.71(syst.)

*: ALICE Collaboration, Phys. Rev. Lett. 110, 032301 (2013)

Results: $dN_{ch}/d\eta$ (NSD) as a function of η

Comparison with models

Results: $dN_{ch}/d\eta$ (NSD) as a function of η

- Comparison with models
 - Saturation models

Results: $dN_{ch}/d\eta$ (NSD) as a function of η^{\dagger}

- Comparison with models
 - Saturation models
 - HIJING models with/without shadowing or including a tune on the gluon shadowing parameter

Results: $dN_{ch}/d\eta$ (NSD) as a function of η^{\dagger}

- Comparison with models
 - Saturation models
 - HIJING models with/without shadowing or including a tune on the gluon shadowing parameter
 - DMPJET normalized to NSD

Results: $dN_{ch}/d\eta$ (NSD) as a function of η^{\dagger}

- Comparison with models
 - Saturation models
 - HIJING models with/without shadowing or including a tune on the gluon shadowing parameter
 - DMPJET normalized to NSD
 - Most of the models which include saturation/shadowing reproduce the data within 20%
 - Saturation models exhibit difficulties to reproduce the shape
 - HJING 2.1 (s_g=0.28) & DMPJET give the closest values

Results: $dN_{ch}/d\eta$ scaling as a function of \sqrt{s}_{NN}

- dN/dη scaled by <N_{part}>
 - $<N_{part}> = 7.9\pm0.6$
 - $(dN_{ch}/d\eta_{cms})/\langle N_{part} \rangle = 2.14\pm0.17$
 - 84% higher than in d-Au at $\sqrt{s_{_{NN}}}$ =0.2 TeV

Results: $dN_{ch}/d\eta$ scaling as a function of \sqrt{s}_{N}

- dN/dη scaled by <N_{part}>
 - $<N_{part}> = 7.9\pm0.6$
 - $(dN_{ch}/d\eta_{cms})/\langle N_{part} \rangle = 2.14\pm0.17$
 - 84% higher than in d-Au at $\sqrt{s_{_{\rm NN}}}$ =0.2 TeV
 - Comparison with other system
 - 16% lower than NSD pp collision interpolated to the same energy
 - Consistent with inelastic pp (pp) interpolated to the same energy

Charged-particle multiplicity in Pb-Pb & p-Pb with ALICE at LHC

Conclusion

♦Pb-Pb @ 2.76 TeV

- The charged particle multiplicity was computed in a large η range and 4 centrality bins (0-30%) thanks to the satellite vertex technique
- The dN/dη per participant pair distribution increases as a function of <N_{part}> with a similar trend in all pseudo-rapidity intervals.
- The ALICE dN/dŋ distributions are consistent with the PHOBOS and BRAHMS distributions in the fragmentation region showing consistency with longitudinal scaling over a large energy range
- The ALICE and PHOBOS (scaled) N_{ch} measurements are consistent
- The dN/dy distribution is consistent with a plateau around |η| < 1.5 and the width of the distribution is wider than expected from Landau hydrodynamics

◆p-Pb @ 5.02 TeV

- The dN/dη is measured and most of the models which include saturation/shadowing reproduce the data within 20%
- The dN/dη scaling is consistent with inelastic pp and 16 % lower than pp NSD data