LHC France 2013

Rencontres frangaises sur la physique des hautes énergies au LHC

Bruno Mazoyer » LAL dr&‘w’

Y

European
Research
Council







Fundamental Lssues




Fundamental Lssues

- Extreme states of matter. Of intrinsic tnterest (RCD phase
diagram, deconfinement, chiral symmetry restoration, ete),
and of relevance for astrophysics (early wuniverse,

compact stars)




Fundamental Lssues

- Extreme states of matter. Of intrinsic tnterest (RCD phase
diagram, deconfinement, chiral symmetry restoration, ete),
and of relevance for astrophysics (early wuniverse,

compact stars)

- ‘Universal’ character of wave functions of Large nuclel at high
energy (dense gluonic systems, saturation, color glass
condensate)




Fundamental Lssues

- Extreme states of matter. Of intrinsic tnterest (RCD phase
diagram, deconfinement, chiral symmetry restoration, ete),
and of relevance for astrophysics (early wuniverse,

compact stars)

- ‘Universal’ character of wave functions of Large nuclel at high
energy (dense gluonic systems, saturation, color glass
condensate)

Simplicity often emerges in asywptotic situations




Fundamental Lssues

- Extreme states of matter. Of intrinsic tnterest (RCD phase
diagram, deconfinement, chiral symmetry restoration, ete),
and of relevance for astrophysics (early wuniverse,

compact stars)

- ‘Universal’ character of wave functions of Large nuclel at high
energy (dense gluonic systems, saturation, color glass
condensate)

Simplicity often emerges in asywptotic situations

Mawny phenomenologieal tssues (heavy Lons are complex
systems 1)
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Little Bang (s)

Initial conditions. Large Lorentz contraction.
Nucleus wave function is mostly gluons.

Particle (entropy) production. Involves mostly ‘small
X' partons. One characteristic scale: saturation
momentum Qs. Large initial fluctuations.

Thermalization of produced partons. Quark-gluon
plasma. Hydrodynamical expansion.

Hadronization in apparent chemical equilibrium.
Hadronic cascade ftill freeze-out. Measurements.
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conditions are reached for the formation of
a quark-gluon plasma

Matter at freeze-out Ls tn chemtical equiLLbrium
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The conditions for the formation of a quark-gluon
plasma are reached in the early stages of the

collisions

order of magnitude estimate
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Matter at freeze-out
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particle ratio

Matter at freeze-out
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Matter flows Like a flutdl

The quark-gluon plasma as a nearly perfect fluid

Puzzles : \/Lsoositg, thermallzation
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Flow is best seen in azymuthal distributions of
produced particles.
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The flow is sensitive to tnitial dewsita fluctuations
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-Viscous hydro is under control and works well (uncertainties:

initial conditions, 2d/3d, longitudinal PdV work ?)
- Rich flow pattern, sensitivity to initial condrtions
- Sensitivity to the equation of state! (Pt, (1/S)dN/dy)

Viscosity puzzle: - small ratio of viscosity to entropy density,
and early thermalization, suggest strong coupling

- naturally explained by AdS/CFT
- but the QCD coupling is not (cannot be) infinite !

Plasma: soft and hard modes, particles and fields. Long
wavelength modes can remain strongly coupled....




TH

“RMALIZATION

- How do we go from the intial nuclear wave-functions to the
locally equilibrated fluid seen in experiments !
- What are the initial d.of.s : partons ¢ color fields (CGC)!?

mixture of both ?

- Inrtial fields are typically unstable (e.g. if anisotric momentum
distributions of particles). Instabilities provide ‘fast’ isotropization
of momentum distributions

- Amplification of soft modes Is a generic feature

- CGC picture suggests an overpopulation of soft modes

(for a summary see arXiv: 1203.2042)




Surprisiwg p-Pb collistons

CMS pPb \[s, = 5.02 TeV, N>/ > 110 (b)
1<p_<3GeVic

d2Npair

1

Is it hydrodynamics ?

Or evidence for CGC ?

Dumitru, Dusling, Gelis, Jalilian-Marian, Lappi, Venugopalan : 1009.5295
Dusling, Venugopalan:1211.3701




Nuclet are made of densely packed gluons
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In a collision at high energy, one
‘sees’ mostly the gluons in the
nuclei

Gluon density increases with energy
(with decreasing x, increasing Q)

Bulk of particle production (P, <2 GeV )
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Fluctuations into multi-gluon configurations look
frozen during collision (Lorentz time dilation)

In a collision at high energy, one
‘sees’ mostly the gluons in the
nuclei

Gluon density increases with energy
(with decreasing x, increasing Q)
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Saturation momentum
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Hard probes are produced on short space time scales, and their production
rate can be calculated from pQCD

Hard probes are like test particles. The study of their propagation provides much
information about the medium in which they propagate.

Examples of hard probes: heavy quarks, quarkonia, photons, Z and W, jets...

Prospects for hard probes at the LHC are truly fascinating




havd processes are wnder control
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Hard processes are not affected by the nuclear
environment, as expected.
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excited states are more ‘fragile’....




Di-j et asymmetry

there is more to it than just ‘jet quenching’...
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A quark-gluon plasma is produced in ultra-relativistic heavy ion collisions,
whose global properties do not seem to change much between RHIC and
LHC (a liquid with low relative viscosity)

We have began to study the properties of this quark-gluon plasma

Modelling of collisions is greatly helped by the success of hydrodynamics

Early stages of the collisions may be amenable to first principle calculations

The LHC is offering new, precise (hard) probes to diagnose the QGP

Much, much more remains to be learned !

The field has never been so exciting as now !




