Determination of the CKM elements |V_{cb}| and |V_{ub}|

Bob Kowalewski LAPP/Annecy and U. of Victoria

Our quantitative understanding of the quark flavor sector has improved dramatically since the B factories began operation. The overconstraints placed on the parameters of the CKM matrix have allowed the CKM mechanism to be validated as the primary source of CP violation, and have placed constraints on new physics at higher mass scales. Nevertheless, there are intriguing deviations that may suggest new physics, and that require further refinement of the key measurements. Two of the key measurements in this context are the magnitudes of the CKM elements $|V_{cb}|$ and $|V_{ub}|$. This talk will focus on the experimental and theoretical methods behind the determinations of these quantities and summarize the current state of precision quark flavor physics.

Menu

The role of precision flavor physics

Methods for measuring |V_{xb}|
 Exclusive semileptonic decays
 Inclusive semileptonic decays

Inclusive semileptonic decays

Current status of |V_{cb}| and |V_{ub}|

Future prospects

Why study flavour physics?

Quark flavour physics has been instructive

- "strange" particles are well named:
 - exhibit matter—antimatter oscillations
 - K_S regeneration
 - CP violation
- Genesis for quark model
- GIM mechanism predicted charm to suppress FCNC
 - they were shown to be right 4 years later
- Kobayashi and Maskawa predict 3rd generation to provide mechanism for CP violation

Why study b physics?

b physics has been instructive

- Able to study CP violation in many decay modes: Kobayashi and Maskawa (and Bigi and Sanda) were right
- Large B⁰ ↔ B
 ⁰ mixing implied heavy top, large CP asymmetries in B decays; both subsequently observed
- Oscillations now seen in $B_s \leftrightarrow \overline{B}_s$
- CKM picture is correct, but is it complete?
 - To answer that we need precision on the basic parameters as well as consistency amongst measurements

Quark mixing matrix

• The weak and mass eigenstates of the 6 quark flavours differ; sum over weak-isospin doublets mixes the 3 generations: $\bar{u}_L \gamma_\mu d'_L + \bar{c}_L \gamma_\mu s'_L + \bar{t}_L \gamma_\mu b'_L \rightarrow \bar{U}_L \gamma_\mu V_{CKM} D_L$

- Mixing matrix is unitary → (N²-N)/2 = 3 angles and (N²-N)/2-2 = 1 phase are sufficient to parameterize it
- B decays allow direct access to 2 elements and indirect access to 2 others via processes involving internal top-quark loops
- Can determine 2 angles and the phase

Introduction

Exclusive Decays

Status and prospects

Unitarity triangle

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

Choice of parameters:

$$\lambda,~A,~\overline{\rho}~\text{and}~\overline{\eta}$$

At the 1% level:
$$|V_{us}|$$

 $\lambda = |V_{us}| = \sin \theta_c$
 $\lambda = 0.2257 \pm 0.0021$
At the 3% level: $|V_{cb}|$
 $A = |V_{cb}|/\lambda^2$
 $A = 0.809 \pm 0.024$
 $|V_{ub}|$ and $|V_{td}|$
 $\rightarrow \overline{\rho} - \overline{\eta}$ plane

 $1 + \mathbf{R}_{t} + \mathbf{R}_{u} = 0$ Unitarity: $\overline{\rho} = \left(1 - \lambda^2 / 2\right)\rho$ $\overline{\eta} = \left(1 - \lambda^2 / 2\right)\eta$ $(\overline{\rho},\overline{\eta})$ (0, 0)(1,0)**v**ub ud $e^{i\gamma}$ R_u $V_{cd} V_{cb}^*$ V_{td} V^{*}_{tb} $(1-\overline{\rho})^2 + \overline{\eta}^2 e^{-i\beta}$ R₁ $V_{cd} V_{ch}^*$ $\gamma = \arg V_{ub}^*$, $\alpha = \pi - \gamma - \beta$

Kowalewski - LAPP seminar

Trees and Loops

Tree-dominated processes are ~free of new physics

New physics, even at a high mass scale, can induce effects in loop-dominated processes

Compare CKM parameters from tree and loop processes

Sensitivity to new physics

Some examples of where new physics could enter:

Current sensitivity

- Using only tree-dominated quantities
 - Plot assumes smaller |V_{ub}| value than what I will show

- Using only loop-dominated quantites
- Need to further improve
 |V_{ub}| and angle γ

2008/05/16

Another look at it

- Recent paper of Soni and Lunghi arXiv:0803.4340
- LQCD improvements are turning CP violation in K⁰ (ϵ_{K}) and B_s mixing (Δm_{Bs}) into powerful constraints; predict larger $|V_{ub}|/|V_{cb}|$ than sin2 β from b- \rightarrow ccs decays
- Need to improve $|V_{ub}|/|V_{cb}|$ measurement to distinguish

2008/05/16

Significant focus of activity

- 'V_{xb}' workshops have been held by BaBar, by Belle, and in recent years jointly:
 - Heidelberg, 2007
 - Melbourne, 2006
 - Separate meetings back to 2001
- Excellent forum for interaction between theory and experiment

- Lively debates within the theory community, even if consensus exists on many issues
- Friendly competition between BaBar and Belle

Determination of |V_{cb}| and |V_{ub}|

The only sensitive method is using semileptonic decays

- this is a task for the e⁺e⁻ B factories, not hadron facilities
- Large data samples are important; so is hermiticity
- Systematic errors dominate; choose working point to trade systematic errors for statistical errors

The final measurements from the B factories will be an enduring legacy (if a super-B facility isn't built);

- important to squeeze out as much precision as possible
- Expect "final" results within a year or two

W

b

ā

В

Semileptonic decays

- Decaying b quark is bound into a meson → QCD effects must be accounted for
- Semileptonic decays involve only 1 hadronic current simplest case we can hope for
- Two approaches:
 - Exclusive: X fully reconstructed
 - Inclusive: sum over many X states, with at most partial reconstruction of the X system

Peculiarities of threshold production

■ B factories operate(d) at $e^+e^- \rightarrow Y(4S) \rightarrow B\overline{B}$

- 20 MeV above BB threshold; no other particles produced
- B mesons have small, known speed β ~ 0.06 in Y(4S) frame; they only fly ~30 microns
- Decay products of B and B overlap in detector
- $e^+e^- \rightarrow q\bar{q}$ continuum decays also produced

BB

Analysis strategies

Semileptonic decays – start with lepton

- Electrons have higher identification efficiency at low momentum and smaller misidentification than muons; some analyses use only electrons
- Leptons from B decays have harder spectrum than from cascade decays B → D (or τ) → lepton; p_ℓ ≥ 1.0 GeV is typical cut

Two strategies

- Reconstruct only signal B decay; particles from the other B contribute to background
- Reconstruct both B decays; low efficiency, clean,
 BB provides measurement of signal B direction (recoil method)

Belle and BaBar

2008/05/16

Kowalewski - LAPP seminar

form factors

Exclusive semileptonic decays

• Conceptually simple – measure $F(q^2)|V_{cb}|$

QCD uncertainties enter calculation of form-factors F

- One form-factor for each Lorentz structure in amplitude
- Shapes versus q² can be measured
- Normalization must come from theory

Form factor normalization

 Normalization is usually calculated at a convenient point; where (in q²) depends on which technique is used

- Lattice QCD is the method of choice
 - Good accuracy can be obtained near maximum $q^2 = (M_B M_X)^2$ (final state hadron is slow)
- QCD sum rules also used for $B \rightarrow \pi \ell v$
 - Best accuracy near $q^2 = 0$

Heavy quark symmetry in $B \rightarrow X_c lv$

Heavy quark symmetry simplifies description

Unique, universal FF, unit normalization at q² max (no recoil)

Parameterize FF as function of 4-velocity product $w = v_B'v_{D^*}$ $w = \frac{m_B^2 + m_{D^*}^2 - q^2}{2m_B m_{D^*}}; \ 1 < w < 1.504$

• $F(w) = F(1) [1 - \rho_D^2 (w - 1) + O((w - 1)^2)]$

Calculate corrections to F(1)=1 due to finite m_b, m_c

Experimental $B \rightarrow X_c lv$

Measure D* and lepton; systematic errors from

- Soft particle reconstruction ($D^* \rightarrow D \pi$ produces soft π)
- Absolute efficiencies for reconstruction, particle ID, BFs, ...
- Existing measurements of $\overline{B}^0 \rightarrow D^{*+}\ell_V$ not consistent (next slide); $B^- \rightarrow D^{*0}\ell_V$ (related by isospin) is useful cross-check

HFAG (PDG2008):

- BF($\bar{B}^0 \rightarrow D^{*+} \ell v$) = (5.16 ± 0.11)% \rightarrow (5.53 ± 0.12)%
- BF($B^{-} \rightarrow D^{*} \, {}^{0}\ell_{V}$) =
- New BaBar D^{* 0} (not in average)

 $(5.56 \pm 0.42)\%$

 $(6.07 \pm 0.29)\%$

• Precise measurements of $B \rightarrow D\ell_v$ are harder to make (but stay tuned)

$B \rightarrow D^* \ell \nu$ Measurements

- Best measurement to date: BaBar arXiv:0705.4008
- Four independent
 kinematic variables per event
- Measures BF, q²
 dependence, FF ratios
 R₁~V/A₁ and R₂~A₂/A₁

$\overline{B}^0 \rightarrow D^{*+} \ell \nu$ average

- Average has P(χ²) = 2.6%
 → scale errors by √χ²/ndf=1.5
- $F(1)|V_{cb}| = (35.9 \pm 0.8) \times 10^{-3}$
- Latest lattice value is^[1]
 F(1) = 0.930 ± 0.023
 Laiho et al., arXiv:0710.1111

Determine

$$V_{cb} = (38.6 \pm 0.9_{exp} \pm 1.0_{th}) \times 10^{-3}$$

2008/05/16

Experimental $B \rightarrow X_u \ell v$

• Best mode for both theory and experiment is $B \rightarrow \pi \ell v$

$$\frac{d\Gamma(B \to \pi \ell \nu)}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{24\pi^3} |p_\pi|^3 |f_+(q^2)|^2$$

 No help from HQ symmetry; need non-perturbative calculation of FF normalization f₊(q²)

 Experimental topology clean; hardest region is high q² (when π is soft) due to background

Experiment: $B \rightarrow \pi \ell v$

- Untagged measurements have high statistics: BaBar PRL 98 (2007) 091801
- Tagged measurements are cleaner: Belle PLB 648:139,2007

$BF(B \rightarrow \pi \ell \nu)$

- Measurements are done with and without recoil technique
- FF shape is best measured by reconstructing only signal B

$|V_{ub}|$ from $B \rightarrow \pi \ell v$

- Use analyticity and unitarity constraints plus measured dΓ/dq² to fit FF shape; then normalize at any q²
- Fit determines $|V_{ub}| f_+(q^2=0) = (91 \pm 3_{BF} \pm 6_{shape})*10^{-5}$
- FF normalizations \rightarrow $|V_{ub}|$ values

	<i>f</i> ₊ (0)	V _{ub} * 10 ⁴	
LCSR	0.26 ± 0.04	$35 \pm 3 {}^{+6}_{-5}$	
LQCD (FNAL)	0.25 ± 0.03	$36 \pm 3 {}^{+5}_{-4}$	
LQCD (HPQCD)	0.27 ± 0.03	$33 \pm 3 {}^{+4}_{-3}$	

Choose
$$|V_{ub}| = (3.5 + 0.6) \times 10^{-3}$$

Near-term anticipated progress

• Experimental information on $D^*\ell v$ is improving

- Higher precision recent measurements agree well
- Expect some further improvements, but limited by systematics
- Experimental information on $\pi \ell v$ is quite good
 - BF known to 6%; need further improvement on q² shape
- Main challenge is for theory
 - Currently 3% on F(1) for $|V_{cb}|$, 12% on $f_{+}(0)$ for $|V_{ub}|$
 - No in principle reason that LQCD can't improve normalization uncertainty to ~1% level on |V_{cb}| and ~5% on |V_{ub}|, but requires significant work

Inclusive semileptonic decays

Theoretical tool: Heavy Quark Expansion (OPE)

$$\Gamma(B \to X) = \frac{1}{2m_B} \sum (2\pi)^4 \delta^4 (p_B - p_X) |\langle X | L_{eff} | B \rangle|^2$$
$$= \frac{G_F^2 m_b^5}{192\pi^3} (1 + A_{EW}) A^{pert} \left\{ 1 + 0 - \frac{\mu_\pi^2 + 3\mu_G^2}{2m_b^2} + \dots \right\}$$

Simplified form for massless X

Quark model result

First correction $O((\Lambda/m_b)^2)$

• Express decay rate as double expansion in α_s and $1/m_b$

- Perturbative corrections are calculable
- Non-perturbative matrix elements (e.g. μ_{π}^2) arise at each order in $1/m_b$; determine these in fits to semileptonic decays

Inclusive semileptonic decay width

• Total decay width for $b \rightarrow c\ell_{V:}$

 $r = m_c / m_b$ parameterizes phase-space factors z_i

$$\Gamma = |V_{cb}|^2 \frac{G_{\Gamma}^2 m_b^5}{192\pi^3} (1 + A_{ew}) A^{pert}(r,\mu) \times \left[z_0(r) + \frac{0}{m_b} + z_2\left(r, \frac{\mu_{\pi}^2}{m_b^2}, \frac{\mu_G^2}{m_b^2}\right) + z_3\left(r, \frac{\rho_D^3}{m_b^3}, \frac{\rho_{LS}^3}{m_b^3}\right) + \dots \right]$$

free quark ~1.014 ~0.908 decay Perturbative corrections

Non-perturbative power corrections

Similar expressions for $b \rightarrow u \ell v$, $b \rightarrow s \gamma$

Comparison with data relies on quark-hadron duality
 → integrate over "broad" regions of phase space

Global fit for $|V_{cb}|$, m_{b} ...

• Calculate moments (M_x^n, E_e^n) of inclusive processes $b \rightarrow c \ell v$ and $b \rightarrow s \gamma$ for various cuts on lepton (photon) energy:

$$\langle M_x^n \rangle_{E_l > E_0} = \tau_B \int_{E_0} M_X^n d\Gamma = f_n^x(E_0, m_b, m_c, \mu_G^2, \mu_\pi^2, \rho_D^3, \rho_{LS}^3)$$

e or γ energy cut b-quark mass

c-quark mass Matrix elements appearing at order 1/m_b² and 1/m_b³

Kinetic scheme Benson, Bigi, Gambino, Mannel, Uraltsev (several papers) 1S scheme Bauer, Ligeti, Luke, Manohar, Trott PRD 70:094017 (2004)

 Fit ~60 measured moments from DELPHI, CLEO, BABAR, BELLE, CDF to determine ~6 parameters

2008/05/16

Kowalewski - LAPP seminar

Measured inclusive moments

Sample of recent (Belle) measurements; similar input from BaBar, CLEO, CDF, DELPHI

PRD75:032001(2007)

PRD75:032005(2007)

arXiv:hep-ex/0508005

Kowalewski - LAPP seminar

Global fit: |V_{cb}| results

Example plots: arXiv:0803.2158

 χ^2 /ndf is too good (e.g. 39/62 for kinetic, 25/63 for 1S); suggests theory errors (included in fit) may be overestimated

Global fit: m_b results

Source	m _b (GeV)		
m _{b[kin]} (global fit)	4.61 ± 0.03		
$m_{b[kin]}$ (global fit, no b \rightarrow s γ)	4.68 ± 0.05		
m _{b[kin]} (bb threshold)	4.56 ± 0.06		
m _{b[1S]} (global fit)	4.70 ± 0.03		
$m_{b[1S]}$ (global fit, no b \rightarrow s γ)	4.75 ± 0.06		
m _{b[1S]} (bb threshold)	4.69 ± 0.03		

 $\rm m_b$ is crucial for $|\rm V_{ub}|$

 $m_{b[kin]} \rightarrow m_{b[1S]}$ scheme translation ~ +0.12 GeV

Use (or not) of $b \rightarrow s\gamma$ in global fit still controversial

Charmless semileptonic decays

■ Use HQE as for b→c ℓv decays; accuracy on total rate $\Gamma(b \rightarrow u \ell v)$ is ~ 0.02% \oplus 2.5×(σ_{mb}/m_b)

However, cuts for isolating experimental signal from background destroy HQE convergence; introduce dependence on Fermi motion:

- Model with shape function (SF)
- Form of SF unknown, but $0^{th} 2^{nd}$ moments constrained by data from global fit (unit normalization, m_B-m_b, parameter μ_{π}^{2})
- Weak annihilation operators can lead to same final states → source of uncertainty
- Optimize: trade off experimental (bkg) versus theoretical (acceptance) errors

Inclusive $b \rightarrow u lv$ measurements

- Isolate charmless decays as function of a kinematic variable, e.g. E_l, m_{Xu}, q², P₊=E_x-|p_x|...
- E.g., recent BaBar and Belle results

arXiv:0708.3702

hep-ex/0504046

- Determine partial rate within specific kinematic region (e.g. $m_{\chi} < 1.55$ GeV or $E_e > 1.9$ GeV)
- Compare with theoretical calculation of partial rate to extract |V_{ub}|

Kowalewski - LAPP seminar

$b \rightarrow u \ell v$ calculations

Several choices available, all starting from HQE:

- Bosch, Lange, Neubert, Paz (BLNP) Phys.Rev.D73,073008(2006)
- Gambino, Giordano, Ossola, Uraltsev (GGOU) JHEP 0710:058(2007)
- Andersen and Gardi (DGE) JHEP 0601:097 (2006)
- Aglietti, Di Lodovico, Ferrera, Ricciardi (AC) arXiv:0711.0860
- Input on m_b varies for each calculation (author's preference)

	Ref.	BLNP	GGOU	DGE	
CLEO E_e BaBar q^2 - E_e BaBar E_e Belle E_e Belle m_x BaBar m_x BaBar m_x	[98] 3 [101] 3 [100] 3 [99] 4	$353 \pm 41 \pm 35$ $395 \pm 27 \pm 39$ $390 \pm 22 \pm 33$ $437 \pm 40 \pm 33$	$371 \pm 43 \pm 32$ not avail. $408 \pm 23 \pm 27$ $456 \pm 42 \pm 26$	$\begin{array}{c} 386 \pm 45 \pm 28 \\ 443 \pm 30 \pm 37 \\ 430 \pm 29 \pm 25 \\ 481 \pm 45 \pm 22 \end{array}$	Values quoted are
	[107] 3 [103] 3 [104] 3	$398 \pm 42 \pm 32$ $374 \pm 18 \pm 31$ $366 \pm 24 \pm 27$	$\begin{array}{c} 416 \pm 44 \pm 29 \\ 402 \pm 19 \pm 28 \\ 389 \pm 26 \pm 22 \end{array}$	$\begin{array}{c} 444 \pm 47 \pm 22 \\ 456 \pm 22 \pm 30 \\ 429 \pm 28 \pm 26 \end{array}$	V _{ub} ×10 ⁵
	ŝ	$399 \pm 14 \pm 30$	$395\pm15\pm21$	$443 \pm 17 \pm 25$	

Inclusive $|V_{ub}|$ determination

"Average of the averages" not the whole story

- Measured ratio of partial rates for $P_+ < 0.66$ GeV to $m_X < 1.7$ GeV, $q^2 > 8$ GeV² is 1.22±0.12; predictions range as high as 1.6
- |V_{ub}| extracted using *same* m_b input varies by 9% across the 3 calculations used; independent theory errors are ~3-4%; add 7% additional error to the average to account for this

Determine $|V_{ub}| = (4.12 \pm 0.15 \pm 0.40) \times 10^{-3}$

Expected improvements - experiment

• $b \rightarrow c \ell v$ moments measurements can be improved

- Hard work systematics limited
- Can measure higher-order moments
- $b \rightarrow s\gamma$ still improves with statistics
- Measurements of $b \rightarrow u \ell v$ can be improved
 - Push to increase acceptance \rightarrow fight large b \rightarrow c ℓ v background
 - Continue to measure many partial rates \rightarrow test theory
 - Pursue direct relations between partial rates of $b \rightarrow s\gamma$ and $b \rightarrow u \ell v$

Expected improvements - theory

• $b \rightarrow c \ell v$ OPE can be improved

- Higher order terms (recent progress not yet reflected in fits)
- perturbative corrections to matrix elements

• Clarify use of $b \rightarrow s\gamma$ in global fits (helps determine m_b)

• Calculations of $b \rightarrow u \ell v$ can be improved

- Several calculations now available; important cross-checks
- Need to add $O(\alpha_s^2)$ terms to partial rate calculation (underway)

Comparison of inclusive and exclusive $|V_{cb}|$

- Determinations from inclusive and exclusive decays are independent, both experimentally (to a large extent) and theoretically (to an even larger extent):
- Inclusive: $|V_{cb}| = (41.6 \pm 0.6) \times 10^{-3}$ Exclusive: $|V_{cb}| = (38.6 \pm 1.3) \times 10^{-3}$
- $|V_{ub}| = (4.12 \pm 0.43) \times 10^{-3}$ $|V_{ub}| = (3.5^{+0.6}_{-0.5}) \times 10^{-3}$

• $|V_{cb}|$ avg has $P(\chi^2)=3\%$; scale error by $\sqrt{\chi^2/ndf}=2.1$ $|V_{ub}|$ avg has $P(\chi^2)=40\%$

$$V_{cb} = (41.2 \pm 1.1) \times 10^{-3}$$

 $|V_{ub}| = (3.95 \pm 0.35) \times 10^{-3}$

- Currently, $\sigma_{|Vub|} = 9\%$, $\sigma_{|Vcb|} = 2.5\%$
- Near-term (<2010): $\sigma_{|Vub|} \sim 6\%$, $\sigma_{|Vcb|} \sim 1.5\%$
- Long term? from Marco Ciuchini: σ_{|Vub|} ~ 2%, σ_{|Vcb|} < 1% https://agenda.infn.it/getFile.py/access?contribId=18&sessionId=3&resId=0&materialId=slides&confId=308

Summary

- |V_{cb}| and |V_{ub}| can be determined in two ~independent ways using inclusive and exclusive semileptonic B decays
- Theoretical uncertainties are important; optimize experimental versus theory uncertainties
- Existing e⁺e⁻ B factories can make further improvements; theoretical calculations can also be improved
- Improvements in precision may be gradual (i.e. slow), but continual progress is being made, and remains important

2008/05/16