Seminar at LPNHE Paris CP violation with heavy mesons Malcolm John 10 May 2012

THE ROYAL SOCIETY

Three subjects

Observation of direct CP violation in B⁺ decays 1fb⁻¹ arXiv:1203.3662

Searches for time-dependent CP-violation in the mixing and decay of B_s mesons 1fb⁻¹ LHCb-CONF-2012-002

Evidence for direct CP violation in D⁰ decays

Why chase CP violation in B⁺ decays?

CP violation known only to occur in the weak interaction of quarks

b

CKM model: 3 quark generations \Rightarrow 3 mixing angles, 1 phase

Wolfenstein expansion in powers of the Cabibbo angle, λ , up to λ^6

This single phase give rise to <u>all</u> CP violation phenomena

Wolfenstein expansion in powers of the Cabibbo angle, λ , up to λ^6

Testing the unitarity of this matrix is a huge part of flavour physics

Wolfenstein expansion in powers of the Cabibbo angle, λ , up to λ^6

We know the Standard Model describes Nature well.

ρ

8

Simple ways to measure γ with trees

10

How could we measure γ ?

• Need a $b \rightarrow c$ and $b \rightarrow u$ transition

weak phase difference:

$$= \arg\left(-\frac{V_{ub}^*}{V_{cb}^*}\right)$$

 $= \gamma$

How could we measure γ ?

• Need a $b \rightarrow c$ and $b \rightarrow u$ transition of similar probability

weak phase difference:

$$\arg\left(\frac{V_{cs} \ V_{ub}^{*}}{V_{us} \ V_{cb}^{*}}\right)$$

$$= \arg\left(-\frac{V_{ub}^*}{V_{cb}^*}\right)$$

 \mathbf{N} ____

$$\left(-\frac{V_{ub}^*}{V_{ub}^*} \right)$$

How could we measure γ ?

• Need a $b \rightarrow c$ and $b \rightarrow u$ transition of similar probability and a <u>common final state</u>

weak phase difference:

$$\arg\left(\frac{V_{cs} \ V_{ub}^{*}}{V_{us} \ V_{cb}^{*}}\right)$$

$$= \arg\left(-\frac{V_{ub}^*}{V_{cb}^*}\right)$$

How could we measure γ ?

• Need a $b \rightarrow c$ and $b \rightarrow u$ transition of similar probability and a <u>common final state</u>

But the larger the interference, the greater the sensitivity to γ

• Need a $b \rightarrow c$ and $b \rightarrow u$ transition of similar probability and a <u>common final state</u>

 K^+

$r_D/r_B \approx 0.6 \sim l$

- Logic is equally applicable to $B^- \rightarrow D\pi^-$ though r_B , and hence the interference is smaller $r_{B(\pi)} \sim 0.01$ compared to $r_{B(K)} \sim 0.1$
- The "physics" observables are ratios of branching fractions and CP asymmetries
- All mode has dependence on γ though this is essentially negligible in the favoured mode

"Favoured" mode

asymmetries In the favoured mode

The "physics" observables

average of *KK* and $\pi\pi$ modes $(D_{CP}K^{-}) - \Gamma(B^{+} \rightarrow D_{CP}K^{+})$ $\overline{D_{CP}K^{-}} + \Gamma(B^{+} \rightarrow D_{CP}K^{+})$

 $2r_B\sin\delta_B\sin\gamma$ $1 + r_B^2 + 2r_B \cos \delta_B \cos \gamma$

$\rightarrow D_{ADS}K^{-}) - \Gamma(B^{+} \rightarrow D_{ADS}K^{+})$ $\rightarrow D_{ADS}K^{-}) + \Gamma(B^{+} \rightarrow D_{ADS}K^{+})$

 $\frac{2r_B r_D \sin(\delta_B + \delta_D) \sin \gamma}{+ r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos \gamma}$

20

So, where might we find billions of B^{\pm} ?

18

You will recognise this...

inner radius at: 29mm (injection) 5mm (stable beams)

Silicon strip vertex detector. >40 μ m pitch at 8.2mm radius

- N(pp collisions)/sec = 11M
- $N_{4\pi}(b\bar{b})/\sec = 70,000$ (*)
- N(events stored)/sec ~ 3,000
- $N(B \rightarrow [hh]_D h) \sim 1 \text{ every } 3 \text{ sec.}$ (*) $\mathcal{Q} \approx 2 \cdot 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$

23

Triggering of the exclusive hadronic final state: $B^{\pm} \rightarrow [h^{+}h^{-}]_{D}h^{\pm}$

LHCb has a two-stage trigger. (1) hardware "L0" trigger running at 40MHz (decisions at 11MHz) (2) software HLT running at 1MHz (3kHz accept rate in 2011)

The high level trigger for $B^{\pm} \rightarrow [h^{+}h^{-}]_{D} h^{\pm}$

- Find a high quality, high p_T, high impact parameter track (this is often the 'bachelor' π or K from the B decay)
- If this successful, then require it to be part of a good quality displaced vertex, consistent with the *B* mass.
 - In 2011, a decision tree algorithm has been successfully used.

Signal selection and extraction

Analysis of $B^{\pm} \rightarrow [h^{+}h^{-}]_{D} h^{\pm}$

- The full 2011 dataset is used in this analysis, approximately **1 fb⁻¹**
- B candidates are refitted, constraining vertices to points and the D-candidate mass to m(D⁰)PDG
- The data are "stripped" down to a manageable size with a loose selection.
 - At this point *B* peaks are clearly visible in the most abundant modes

didate mass to m(*D^o*)_{PDG} on.

Minimising combinatoric background

- Use the TMVA Boosted Decision Tree with 20 variables.
- Train on a simulated $B^{\pm} \rightarrow /K\pi / DK^{\pm}$ sample vs. the data sidebands from the **2010 dataset** (35 pb⁻¹)

- Useful quantities to distinguish the signal:
 - Transverse momenta
 - Impact parameters
 - Flight distances
 - Quality of vertices
 - Distances of closest approach
 - Comparison of momentum and spatial vectors
 - And some pT information from the rest of the event

Dedicated particle identification

Dedicated particle identification

O 01

*Achieves pion-kaon separation from ~5 to 100 GeV/c

٠

The result is applicable to all modes considered

The CP eigenstate modes

The CP eigenstate modes

First observation of the *DK*[±], ADS mode

First observation of the *DK*[±], ADS mode

$\mathscr{B}(B^{\pm} \rightarrow [\pi^{\pm} K^{+}]_{D} K^{\pm})$ $\approx (2.2 \pm 0.3) \times 10^{-7}$
What about CP violation?

KK mode, split by the charge of the B

$\pi\pi$ mode, split by the charge of the *B*

$\pi\pi$ mode, split by the charge of the *B*

ADS mode, split by the charge of the B

ADS mode, split by the charge of the B

 4.0σ

Interpretation and [near] future

43

But how does this tie-in with γ ?

- All of the physics observables may be written in terms of the "fundamental" parameters: r_B , γ , δ_B
- A full multi-mode treatment, leading to an LHCb measurement of r_B , γ , δ_B is in preparation.
- However, in the short-term, we can get an idea by using the standard equations (below);
 - take the strong phase δ_D is well known. (neglecting a ±12° uncertainty)

$$R_{CP+} = 1 + r_B^2 + 2r_B \cos \delta_B \cos \gamma$$
$$A_{CP+} = \frac{2r_B \sin \delta_B \sin \gamma}{1 + r_B^2 + 2r_B \cos \delta_B \cos \gamma}$$

$$R^{ADS} = \frac{r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D)}{1 + (r_B r_D)^2 + 2r_B r_D \cos(\delta_B - \delta_D)}$$

$$A^{ADS} = \frac{2r_B r_D \sin(\delta_B + \delta_D) \sin\gamma}{r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D)}$$

ntal" parameters: r_B , γ , δ_B δ_B is in preparation. quations (below); ainty)

 $\frac{1}{2} \cos \gamma$

 $\cos \gamma$

Using: $R_{ADS(K)}$ and $A_{ADS(K)}$

Using: $R_{ADS(K)}$ and $A_{ADS(K)}$ and R_{CP+} and A_{CP+}

Many direct CPV analyses coming to maturity:

 $B^- \rightarrow D K^ \bar{B}^0 \rightarrow D K^{*0}$ $D \rightarrow K^+\pi^ D \rightarrow K^+\pi^ \begin{array}{c} D \longrightarrow K^{+}\pi^{-} \\ D \longrightarrow K^{-}K^{+} \\ D \longrightarrow \pi^{-}\pi^{+} \end{array} \begin{array}{c} \text{presented} \\ \text{today.} \end{array}$ $D \rightarrow K^-K^+$ Favoured mode first $D \rightarrow \pi^- \pi^+$ observed $D \rightarrow K_S^0 \pi^+ \pi^$ in 2010 $B^- \rightarrow D K^- \pi^+ \pi^ D \rightarrow K_S^0 K^+ K^ D \rightarrow K^+ \pi^- \pi^+ \pi^ D \rightarrow K^+ \pi^ D \rightarrow K^-K^+$ $D \rightarrow K^+ \pi^- \pi^0$ $D \rightarrow \pi^- \pi^+$

Summer 2012: important contribution from the "GGSZ" method

- Exactly the same idea: interference between $b \rightarrow u$ and $b \rightarrow c$ transitions but this time, use a three-body common final state
 - $B^- \rightarrow D K^ D \rightarrow K_S^0 \pi^+ \pi^-$

• This method is particularly useful for combatting the trigonometric ambiguities present in the determination of γ from the ADS & *CP* methods

Using: $R_{ADS(K)}$ and $A_{ADS(K)}$ and R_{CP+} and A_{CP+} and the GGSZ modes

And unique to LHCb: γ from B_s tree decays

Precise measurement of

$$B_s^0 \rightarrow D_s^- K^+$$

branching now made. Time-dependent measurement of γ on-going.

$${\cal B}(B^0_s o D^-_s K^+) = (1.90 \pm 0.12 \pm 0.13)^{+0.12}_{-0.14} imes 10^{-4}$$

LHCb is on-track to make a combined measurement of γ using B^{\pm}, B^{0}, B_{s} tree decays, to an accuracy of 5~8° with the 2011+2012 dataset.

Neutral meson formalism

The time evolution of a two-state mixing system is well known

$$i\frac{d}{dt} \begin{pmatrix} |B_q(t)\rangle \\ |\bar{B}_q(t)\rangle \end{pmatrix} = \begin{pmatrix} \hat{M}^q - \frac{i}{2}\hat{\Gamma}^q \end{pmatrix} \begin{pmatrix} |B_q(t)| \\ |\bar{B}_q(t)\rangle \end{pmatrix}$$
Trivial case. Applies to B^{\pm} decays
$$\begin{pmatrix} M_{11} & 0 \\ 0 & M_{22}\end{pmatrix} \begin{pmatrix} \Gamma_{11} & 0 \\ 0 & \Gamma_{22}\end{pmatrix}$$
Mixing can occur with B⁰ and B_s

$$\begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22}\end{pmatrix} \begin{pmatrix} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{21} & \Gamma_{22}\end{pmatrix}$$
And CP violation in mixing occurs if
$$\phi_q = \arg(-M_{12}^q/\Gamma_{12}^q)$$
is non-zero.

Diagonalising the matrix obtains the two [observable] mass eigenstates. Referred to the Heavy and Light states.

And CP violation in

$$B_{q,H} := p B_q + q \bar{B}_q$$
$$B_{q,L} := p B_q - q \bar{B}_q$$

$|p|^2 + |q|^2 = 1$

Properties

If there is no *CP* violation, $p=q=\sqrt{2}$, *B_H* is pure *CP*+ and *B_L* is pure *CP*-

$$B_{q,H} := p B_q + q \bar{B}_q \qquad |p$$
$$B_{q,L} := p B_q - q \bar{B}_q$$

In addition to the CP violating phase, two other observables can be measured:

The mass difference

$$\Delta M_q := M_H^q - M_L^q = 2|M_{12}^q| \left(1 - \frac{1}{8} \frac{|\Gamma_1|}{|M_1|}\right)$$

B⁰: $\Delta m_d = 0.507 \pm 0.004 \text{ ps}^{-1}$ (SM: 0.54±0.09 ps⁻¹)

B_s: $\Delta m_s = 17.69 \pm 0.08 \text{ ps}^{-1}$ (SM: 17.3±2.6 ps⁻¹)

The lifetime difference

$$\Delta\Gamma_q := \Gamma_L^q - \Gamma_H^q = 2|\Gamma_{12}^q|\cos\phi_q\left(1 + \frac{1}{8}\right)$$

 B^0 : $\Delta \Gamma_d = \text{small} (SM: \sim 0)$

 $B_{s}: \ \Delta\Gamma_{s} = 0.100 \pm 0.013 \text{ ps}^{-1} \quad (\text{ SM: } 0.087 \pm 0.021 \text{ ps}^{-1})$ Update in a moment

 $|^2 + |q|^2 = 1$

 $\left(1 + \frac{1}{8} \frac{|\Gamma_{12}^{q}|^{2}}{|M_{12}^{q}|^{2}} \sin^{2} \phi_{q} + \dots\right)$

ρ

The CKM triangle relevant to the B_s system has a rather different shape

55

Wolfenstein expansion in powers of the Cabibbo angle, λ , up to λ^6

Possible penguin pollution

penguin phase and amplitude is unknown though expected small

ϕ_s from $B_s \rightarrow J/\psi \phi$

Three years ago...

Angular analysis is needed to separate the CP+ and CP- components

- In the B_s rest frame, ϕ and J/ ψ have relative orbital momentum $\ell = 0, 1, 2$
- Since $CP | f > = (-1)^{\ell} | f >$, the final state is mixture of CP even ($\ell = 0, 2$) and CP odd ($\ell = 1$)
- Three angles θ , φ , ψ describe directions of final decay products J/ $\psi \rightarrow \mu\mu$ and $\phi \rightarrow K^+K$ from which the CP+ and CP- components may be extracted

Visualise the expected PDF after integrating over 2 of the 3 angles

• Amplitude of "wiggles" $\propto \sin \phi_s$

Again, the vertex detector plays a vital role

Need to have a good proper time resolution with respect to the meson oscillation period, ~350 fs

And importantly, need to tag the flavour at production

NB: tagging is much less precise, i.e. more diluted at LHCb than the B factories

Fit to data in four variables

Fit to data in four variables

$\label{eq:sphere:sphe$

ϕ_s from $B_s \rightarrow J/\psi \pi^+\pi^-$

If just one CP eigenstate is present, the analysis is simpler

If just one CP eigenstate is present, the analysis is simpler

 $B_{\rm s} \rightarrow J/\psi \pi^+\pi^-$ result: $\phi_{\rm s} = -0.02 \pm 0.17 \pm 0.02$ rad

Pictorial world summary and final LHCb result

CP violation in charm is suppressed in the SM

Wolfenstein expansion in powers of the Cabibbo angle, λ , up to λ^6

$$0 = V_{us}^* V_{cs} + V_{ub}^* V_{cb} + V_{ud}^*$$

if the b contribution can be neglected then only two generations contribute, i.e. approximates to a real Cabibbo matrix, and no CP violating phases

 V_{cd}

 $\propto \lambda$

Where to look for CP violation in charm

- A good bet is singly Cabibbo suppressed decays
- Interference between tree and penguin may generate CP asymmetries

And look for it at LHCb where huge D-meson samples are appearing

 $\sigma_{bb}(pp \rightarrow bbX) = (284 \pm 20 \pm 49) \mu b$ $\sigma_{c\overline{c}}(pp \rightarrow ccX) = (6.10 \pm 0.93) \text{ mb}$
Time-integrated CP asymmetry

We would like to measure (for f=CP eigenstate, KK or $\pi\pi$):

$$A_{CP}(f) = \frac{\Gamma(D^0 \to f) - \Gamma(\overline{D}^0 \to f)}{\Gamma(D^0 \to f) + \Gamma(\overline{D}^0 \to f)}$$

What we can measure is:

 $A_{raw}(f) = \frac{N(D^{*+} \to D^0(f)\pi_s^+) - N(D^{*-} \to \overline{D}^0(\overline{f})\pi_s^-)}{N(D^{*+} \to D^0(f)\pi_s^+) + N(D^{*-} \to \overline{D}^0(\overline{f})\pi_s^-)}$ K/π The "slow" pion from the D^{*} tags the flavour of the D^0/\overline{D}^0 K/π 00 slow π

Detector effects are present in the raw asymmetry

But everything cancels, in principle, in the double difference

$$\Delta A_{CP} \equiv A_{raw}(KK) - A_{raw}(\pi\pi)$$

Mass fits to the total, selected dataset

Robustness against systematic effects

• The cancellation of the instrumentation asymmetries is unfortunately not exact. Second-order dependences on the KK/ $\pi\pi$ efficiency ratio could reintroduce small asymmetries

- Solution: separate the dataset into several kinematic bins (p_T and pseudorapidity of the D^{*}, and momentum of the slow pion)
- Similarly, analyse the dipole-up/down data separately, and the left and right hemisphere of LHCb separately.
- In total 216 statistically independent measurements of ΔA_{CP}

Also minimise headaches by applying judicious fiducial cuts

 $P_x(\pi_s)$

Exclude regions of phase space where only one charge of the slow pion are seen. *i.e. Don't rely on the UP and DOWN* magnet samples to exactly cancel!

field down В

Final measurement fit

• Cut on D⁰ mass and fit the D*-D⁰ mass difference only in 216 bins

 $\Delta A_{CP} = (-0.82 \pm 0.21 \pm 0.11)\%$

Largest systematics from: Alternative fit procedure (0.08%) Multiple candidate choice (0.06%) Hypothetical peaking bkgd (0.04%)

Consistency: χ^2 /NDF = 211/215, prob = 56%

One example bin:

Many, many cross-checks performed, some examples

- Tighter PID cuts using the RICH information $\Delta A_{CP} = (-0.88 \pm 0.26)\%$ tight.... $\Delta A_{CP} = (-1.03 \pm 0.31)\%$
- Examine different times, polarity and hemisphere of the detector

Subsample	ΔA_{CP}	χ^2/ndf
Pre-TS, field up, left	$(-1.22 \pm 0.59)\%$	13/26(98%)
Pre-TS, field up, right	$(-1.43 \pm 0.59)\%$	27/26(39%)
Pre-TS, field down, left	$(-0.59 \pm 0.52)\%$	19/26(84%)
Pre-TS, field down, right	$(-0.51 \pm 0.52)\%$	29/26(30%)
Post-TS, field up, left	$(-0.79 \pm 0.90)\%$	26/26(44%)
Post-TS, field up, right	$(+0.42 \pm 0.93)\%$	21/26(77%)
Post-TS, field down, left	$(-0.24 \pm 0.56)\%$	34/26(15%)
Post-TS, field down, right	$(-1.59 \pm 0.57)\%$	35/26(12%)
All data	$(-0.82 \pm 0.21)\%$	211/215(56%)

tighter....

Consistency: χ^2 /NDF = 6.7/7 prob = 45%

Initial euphoria has given way; the SM is probably not under threat

Construction of the Construction of the Arriver of the Construction of the Constructio	
	Theory statements about CPV in D bef
3	[1002.4794] How large can the SM contribution to CP violation in \$D^0-\bar D^0\$ mixing be? - Mozilla Firefox
Alexander Let	nz - Outlook W 👋 📴 [1002.4794] How large can t 🛠 📫
╞ 🛄 arxiv.o	rg/abs/arXiv:1002.4794 👘 🐨 🖤 🚱 🛃
Most Visited	🗝 🐮 Interactions.org - Par 📓 SPIEGEL ONLINE - Na 🔝 Latest Headlines 👻 🔂 CERN Hot News 👻
Co Li	ornell University orary
arXiv.org > h	ep-ph > arXiv:1002.4794
High Energy	Physics - Phenomenology
Linux laws	e see the CM contribution to CD violation in CD40 they D400 mining both
How larg	je can the SM contribution to CP violation in \$D^0-\bar D^0\$ mixing be?
M. Dahamalal	
M. Bobrowski	, A. Lenz, J. Riedl, J. Rohrwild
(Submitted on 25	, A. Lenz, J. Riedl, J. Rohrwild 5 Feb 2010)
M. Bobrowski (Submitted on 2: We investig purpose we neutral \$D\$ result for \$10 in the HQE n experimental statements I predictiona	A. Lenz, J. Riedl, J. Rohrwild 5 Feb 2010) ate the maximum size of CP violating effects in \$D\$-mixing within the Standard Model (SM), using Heavy Quark Expansion (HQE) as theoretical working too determine the leading HQE contributions and also \$\alpha_s\$ corrections as well as subleading \$1/m_c\$ corrections to the absorptive part of the mixing am mesons. It turns out that these contributions to \$\Gamma_{12}\$ do not vanish in the exact SU\$(3)_\mathrm{F}\$ limit. Moreover, while the leading HQE term Gamma_{12}\$ orders of magnitude lower than the current experimental value, we do find a sizeable phase. In the literature it was suggested that higher order might be much less affected by the severe GIM cancellations of the leading terms; it is even not excluded that these higher order terms can reproduce the to value of \$y\$. If such an enhancement is realized in nature, the phase discovered in the leading HQE terms can have a sizeable effect. Therefore, we think like: {\it "CP violating effects in \$D\$-mixing of the order of \$10^{-3}\$ to \$10^{-2}\$ are an unambigous sign of new physics"}given our limited knowlegde of the are premature. Finally, we give an example of a new physics model that can enhance the leading HQE terms to \$\Gamma_{12}\$ by one to two orders of magniture.
M. Bobrowski (Submitted on 2: We investig purpose we neutral \$D\$ result for \$10 in the HQE n experimental statements I predictiona	, A. Lenz, J. Riedl, J. Rohrwild 5 Feb 2010) ate the maximum size of CP violating effects in \$D\$-mixing within the Standard Model (SM), using Heavy Quark Expansion (HQE) as theoretical working too determine the leading HQE contributions and also \$\alpha_s\$ corrections as well as subleading \$1/m_c\$ corrections to the absorptive part of the mixing am mesons. It turns out that these contributions to \$\Gamma_12}\$ do not vanish in the exact SU\$(3)_\mathrm{F}\$ limit. Moreover, while the leading HQE term Bamma_{12}\$ orders of magnitude lower than the current experimental value, we do find a sizeable phase. In the literature it was suggested that higher order might be much less affected by the severe GIM cancellations of the leading terms; it is even not excluded that these higher order terms can reproduce the ti value of \$y\$. If such an enhancement is realized in nature, the phase discovered in the leading HQE terms can have a sizeable effect. Therefore, we think like: {\it "CP violating effects in \$D\$-mixing of the order of \$10^{-3}\$ to \$10^{-2}\$ are an unambigous sign of new physics"}given our limited knowlegde of the are premature. Finally, we give an example of a new physics model that can enhance the leading HQE terms to \$\Gamma_12\$ by one to two orders of mag- 14 pages, considerably extended version of 0904.3971 with completely new main aspect; text (except title and abstract) identical to the version accepted by JHEP
M. Bobrowski (Submitted on 2: We investig: purpose we neutral \$D\$ result for \$\0 in the HQE is experimental statements is predictiona Comments: Subjects:	, A. Lenz, J. Riedl, J. Rohrwild 5 Feb 2010) ate the maximum size of CP violating effects in \$D\$-mixing within the Standard Model (SM), using Heavy Quark Expansion (HQE) as theoretical working too determine the leading HQE contributions and also \$\alpha_s\$ corrections as well as subleading \$1/m_c\$ corrections to the absorptive part of the mixing am mesons. It turns out that these contributions to \$\Gamma_{12}\$ do not vanish in the exact SU\$(3)_\mathrm{F}\$ limit. Moreover, while the leading HQE term Gamma_{12}\$ orders of magnitude lower than the current experimental value, we do find a sizeable phase. In the literature it was suggested that higher order might be much less affected by the severe GIM cancellations of the leading terms; it is even not excluded that these higher order terms can reproduce the divalue of \$y\$. If such an enhancement is realized in nature, the phase discovered in the leading HQE terms can have a sizeable effect. Therefore, we think like: {\it "CP violating effects in \$D\$-mixing of the order of \$10^{-3}\$ to \$10^{-2}\$ are an unambigous sign of new physics"}given our limited knowledge of the are premature. Finally, we give an example of a new physics model that can enhance the leading HQE terms to \$\Gamma_{12}\$ by one to two orders of mark 14 pages, considerably extended version of 0904.3971 with completely new main aspect; text (except title and abstract) identical to the version accepted by JHEP High Energy Physics - Phenomenology (hep-ph); High Energy Physics - Experiment (hep-ex) * JHEP 03/2010/009
M. Bobrowski (Submitted on 2: We investig purpose we neutral \$D\$ result for \$10 in the HQE in experimental statements I predictiona Comments: Subjects: Journal references Report number:	, A. Lenz, J. Riedl, J. Rohrwild 5 Feb 2010) ate the maximum size of CP violating effects in \$D\$-mixing within the Standard Model (SM), using Heavy Quark Expansion (HQE) as theoretical working too determine the leading HQE contributions and also \$\alpha_s\$ corrections as well as subleading \$1/m_c\$ corrections to the absorptive part of the mixing am mesons. It turns out that these contributions to \$\Gamma_[12]\$ do not vanish in the exact SU\$(3)_\mathrm{F}\$ limit. Moreover, while the leading HQE term Bamma_{12}\$ orders of magnitude lower than the current experimental value, we do find a sizeable phase. In the literature it was suggested that higher order might be much less affected by the severe GIM cancellations of the leading terms; it is even not excluded that these higher order terms can reproduce the divalue of \$y\$. If such an enhancement is realized in nature, the phase discovered in the leading HQE terms can have a sizeable effect. Therefore, we think like: {\it"CP violating effects in \$D\$-mixing of the order of \$10^{-3}\$ to \$10^{-2}\$ are an unambigous sign of new physics"}given our limited knowlegde of the are premature. Finally, we give an example of a new physics model that can enhance the leading HQE terms to \$\Gamma_{12}\$ by one to two orders of magnitude 14 pages, considerably extended version of 0904.3971 with completely new main aspect; text (except title and abstract) identical to the version accepted by JHEP. High Energy Physics - Phenomenology (hep-ph); High Energy Physics - Experiment (hep-ex) so JHEP 03(2010)009 DO-TH 10/04,TTK-10-2
M. Bobrowski (Submitted on 2: We investig: purpose we neutral \$D\$ result for \$\0 in the HQE n experimenta statements I prediction; Comments: Subjects: Journal reference Report number: Cite as:	A. Lenz, J. Riedl, J. Rohrwild 5 Feb 2010) ate the maximum size of CP violating effects in \$D\$-mixing within the Standard Model (SM), using Heavy Quark Expansion (HQE) as theoretical working too determine the leading HQE contributions and also \$\alpha_s\$ corrections as well as subleading \$1/m_c\$ corrections to the absorptive part of the mixing am mesons. It turns out that these contributions to \$\Gamma_{12}\$ do not vanish in the exact SU\$(3)_\mathrm{F}\$ limit. Moreover, while the leading HQE term Bamma_{12}\$ orders of magnitude lower than the current experimental value, we do find a sizeable phase. In the literature it was suggested that higher order might be much less affected by the severe GIM cancellations of the leading terms; it is even not excluded that these higher order terms can reproduce the id value of \$y\$. If such an enhancement is realized in nature, the phase discovered in the leading HQE terms can have a sizeable effect. Therefore, we think ike: {\ti *CP violating effects in \$D\$-mixing of the order of \$10^{-3}\$ to \$10^{-2}\$ are an unambigous sign of new physics")—given our limited knowledge of the are premature. Finally, we give an example of a new physics model that can enhance the leading HQE terms to \$\Gamma_{12}\$ by one to two orders of magnitude 14 pages, considerably extended version of 0904.3971 with completely new main aspect; text (except title and abstract) identical to the version accepted by JHEP High Energy Physics - Phenomenology (hep-ph); High Energy Physics - Experiment (hep-ex) arXiv:1002.4794v1 [hop-ph]
M. Bobrowski (Submitted on 2: We investig purpose we neutral \$D\$ result for \$W in the HQE n experimenta statements I predictiona Comments: Subjects: Journal reference Report number: Cite as:	A. Lenz, J. Riedl, J. Rohrwild 5 Feb 2010) ate the maximum size of CP violating effects in \$D\$-mixing within the Standard Model (SM), using Heavy Quark Expansion (HQE) as theoretical working too determine the leading HQE contributions and also \$\alpha_s\$ corrections as well as subleading \$1/m_c\$ corrections to the absorptive part of the mixing am mesons. It turns out that these contributions to \$\Gamma_12}\$ do not vanish in the exact SU\$(3)_\mathrm{F}}\$ limit. Moreover, while the leading HQE term Samma_{12}\$ orders of magnitude lower than the current experimental value, we do find a sizeable phase. In the literature it was suggested that higher order might be much less affected by the severe GIM cancellations of the leading terms; it is even not excluded that these higher order terms can reproduce the divalue of \$y\$. If such an enhancement is realized in nature, the phase discovered in the leading HQE terms can have a sizeable effect. Therefore, we think like: {\it "CP violating effects in \$D\$-mixing of the order of \$10^{-3}\$ to \$10^{-2}\$ are an unambigous sign of new physics",-given our limited knowledge of the are premature. Finally, we give an example of a new physics model that can enhance the leading HQE terms to \$\Gamma_{12}\$ by one to two orders of mag 14 pages, considerably extended version of 0904.3971 with completely new main aspect; text (except title and abstract) identical to the version accepted by JHEP High Energy Physics - Phenomenology (hep-ph); High Energy Physics - Experiment (hep-ex) arXiv:1002.4794v1 [hep-ph] history
M. Bobrowski (Submitted on 2: We investig purpose we neutral \$D\$ result for \$W in the HQE (experimental statements) prediction	A. Lenz, J. Riedl, J. Rohrwild 5 Feb 2010) tate the maximum size of CP violating effects in \$D\$-mixing within the Standard Model (SM), using Heavy Quark Expansion (HQE) as theoretical working too determine the leading HQE contributions and also \$\alpha_s\$ corrections as well as subleading \$1/m_\$ corrections to the absorptive part of the mixing am mesons. It turns out that these contributions to \$\Gamma_[12]\$ do not vanish in the exact SU\$(3)_\mathrm{F}} limit. Moreover, while the leading HQE term 3amma_{12}\$ orders of magnitude lower than the current experimental value, we do find a sizeable phase. In the literature it was suggested that higher order might be much less affected by the severe GIM cancellations of the leading terms; it is even not excluded that these higher order terms can reproduce the d value of \$y\$. If such an enhancement is realized in nature, the phase discovered in the leading HQE terms can have a sizeable effect. Therefore, we think like: [\it 'CP violating effects in \$D\$-mixing of the order of \$10^{-3}\$ to \$10^{-2}\$ are an unambigous sign of new physics']given our limited knowlegde of the repremature. Finally, we give an example of a new physics model that can enhance the leading HQE terms to \$\Gamma_{12}\$ by one to two orders of mag- 14 pages, considerably extended version of 0904.3971 with completely new main aspect; text (except the and abstract)\dentical to the version accepted by JHEP High Energy Physics - Phenomenology (hep-ph); High Energy Physics - Experiment (hep-ex) # JHEP 03(2010)008 DO-TH 10/04,TTK-10-2 arXiv:1002.4794v1 [hep-ph] history Lenz [view emai]
M. Bobrowski (Submitted on 2: We investig: purpose we neutral \$D\$ result for \$\0 in the HQE is experimental statements I prediction; Comments: Subjects: Journal reference Report number: Cite as: Submission I From: Alexander [v1] Thu, 25 Feb	, A. Lenz, J. Riedl, J. Rohrwild 5 Feb 2010) ate the maximum size of CP violating effects in \$D\$-mixing within the Standard Model (SM), using Heavy Quark Expansion (HQE) as theoretical working too determine the leading HQE contributions and also \$\alpha_s\$ corrections as well as subleading \$1/m_c\$ corrections to the absorptive part of the mixing am mesons. It turns out that these contributions to \$\Gamma_12}\$ do not vanish in the exact SU\$(3)_\mathrm{F}\$ limit. Moreover, while the leading HQE term 3amma_{12}\$ orders of magnitude lower than the current experimental value, we do find a sizeable phase. In the literature it was suggested that higher order might be much less affected by the severe GIM cancellations of the leading terms; it is even not excluded that these higher order terms can reproduce the divalue of \$y\$. If such an enhancement is realized in nature, the phase discovered in the leading HQE terms can have a sizeable effect. Therefore, we think like: [Vi 'CP violating effects in \$D\$-mixing of the order of \$10^{-2}3}\$ to \$10^{-2}}\$ are an unambigous sign of new physics")given our limited knowledge of th are premature. Finally, we give an example of a new physics model that can enhance the leading HQE terms to \$\Gamma_12}\$ by one to two orders of magnitude 14 pages, considerably extended version of 0904.3971 with completely new main aspect; text (except title and abstract) identical to the version accepted by JHEP High Energy Physics - Phenomenology (hep-ph); High Energy Physics - Experiment (hep-ex) e: _JHEP 03(2010)009 DO-TH 10/04,TTK-10-2 arXiv:1002,4794v1 [hep-ph] history Lenz [view email] 2010 14:27.00 GMT (97kb)

Alexander Lenz, Moriond 2012

Nevertheless, LHCb will continue to explore CPV in charm

- Considerable efforts to make the LHCb trigger more favourable to charm in 2012 will mean a quadrupling of the dataset, not x2.5.
- Instead of using the slow pion, an analysis using the muon from semileptonic B decays is underway. i.e. ΔA_{CP} from $B \rightarrow D^0 \mu^{\pm} v$
- Other singly Cabibbo suppressed decays under study, notably the Dalitz analysis of flavour-tagged $D^0 \rightarrow K_s \pi \pi$

Conclusion

Observation of direct CP violation in B⁺ decays Important step toward a measurement of γ with ~10% precision in the next 12-15 months

Searches for time-dependent CP-violation in the mixing and decay of B_s mesons Hints of unexpectedly large CP violation in the Bs system have been wiped away. Efforts continue, but quantifying the penguin contribution in both B⁰ and B_s systems needs the LHCb upgrade

Evidence for direct CP violation in D⁰ decays Llook to confirm this result in the next 18 months

82

Uses of γ from trees: comparison with loop-mediated processes

• Charmless decays of B_d and B_s mesons can exhibit CP violation from tree-penguin interference

• Aside:

First evidence of direct *CP* violation in charmless twobody decays of B^0_{s} mesons

LHCb. arXiv:1202.6251

Uses of γ from trees: CKM triangle metrology

- sin2β is the most precisely determined component of the unitarity triangle
 the penguin contribution is usually neglected, but, this could be naive
- An example of tension in the unitarity triangle is with $|V_{ub}|$ from $B^+ \rightarrow \tau^+ \nu$ and $\sin 2\beta$
 - This is a simple tree decay (exchange diagram)
 - Small theoretical uncertainties.

• As we seek to test the unitarity of the CKM model, it becomes increasingly important to distinguish tree measurements from those with sensitivity to loops.

First result: the ratio of $B^- \rightarrow D^0 h^-$ branching fractions

Non-true-D peaking backgrounds in the CP and ADS modes

e.g.
$$B^{\pm} \rightarrow [\pi \pi] K^{\pm}$$
 suffers from:

10⁻³ 10 0

 $B^{\pm} \rightarrow K \pi \pi^{\pm}$ $B^{\pm} \rightarrow [K\pi]\pi^{\pm}$ $B^{\pm} \rightarrow \pi \pi \pi^0 \pi^{\pm}$

Charmless

Cross feed

Part. reco. cross feed

- The above cut is ~85% efficient and

LHCb simulation

• Thanks to the large boost at LHCb non-true-*D* backgrounds can be easily removed.

removes 97% of zero-lifetime backgrounds

Favoured mode \rightarrow ADS mode cross feed

• This is just 2% of $R_{ADS(\pi)}$.

$$= \frac{r_B + r_D + 2r_B r_D \cos(\delta_B + \delta_D) \cos(\delta_B + \delta_D)}{1 + (r_B r_D)^2 + 2r_B r_D \cos(\delta_B - \delta_D) \cos(\delta_B - \delta_D) \cos(\delta_B - \delta_D)}$$

Many thanks to the CKMFitter collaboration for absorbing these results

Dealing with production/detection asymmetries

 $J/\psi\,K^{\pm}$

- $A_{CP}((K\pi)_D\pi) = A_{raw}((K\pi)_D\pi) A_{Prod} A_K$ $A_{CP}((K\pi)_DK) = A_{raw}((K\pi)_DK) A_{Prod} 2 \times A_K$ $A_{CP}((\pi K)_D \pi) = A_{raw}((\pi K)_D \pi) - A_{Prod} + A_K$ $A_{CP}((\pi K)_D K) = A_{raw}((\pi K)_D K) - A_{Prod}$
- $A_{CP}((KK)_D\pi) = A_{raw}((KK)_D\pi) A_{Prod}$
- $A_{CP}((KK)_DK) = A_{raw}((KK)_DK) A_{Prod} A_K$
 - $A_{CP}((\pi\pi)_D\pi) = A_{raw}((\pi\pi)_D\pi) A_{Prod}$ $A_{CP}((\pi\pi)_D K) = A_{raw}((\pi\pi)_D K) - A_{Prod} - A_K$

FIXED (%) $A_{Prod} = -0.8 \pm 0.7$ $A_K = -0.5 \pm 0.7$ $= 0.0\pm0.7$

Track momentum of final sample

10³

Penguins in $sin(2\beta)$: $B_s \rightarrow J/\psi K_S$

- The unitarity triangle shows some tension between $|V_{ub}|$ and $sin(2\beta)$.
- How much of "sin(2β)" is sin(2β)? How large are the hadronic penguin contributions?
- Could be eventually deduced by comparing $B_d \rightarrow J/\psi K_{S^0}$ and its U-spin partner: $B_s \rightarrow J/\psi K_{S^0}$
- First step: confirmation in LHCb dataset.

$$\frac{\mathcal{B}(B_s \to J/\psi K_{\rm S}^0)}{\mathcal{B}(B_d \to J\psi K_{\rm S}^0)} = (3.78 \pm 0.58 \pm 0.20 \pm 0.3)$$

LHCb-CONF-2011-048

DACP elsewhere...

Experimental status (individual A_{CP})

Ye	ar Experiment	CP Asymmetry in the decay mod D0 to π+π-	[Γ(D0)-Γ(D0bar)]/
201	0 CDF	M.J. Morello (CDF Collab.), Preprint (CHARM 2010),	$+0.0022 \pm 0.0$
200	8 BELLE	M. Staric et al. (BELLE Collab.), Phys. Lett. B 670, 190 2008).	$+0.0043 \pm 0.0$
200	8 BABAR	B. Aubert et al. (BABAR Collab.), Phys. Rev. Lett. 100, 061803 (2008).	-0.0024 ± 0.00
200	2 CLEO	S.E. Csorna et al. (CLEO Collab.), Phys. Rev. D 65, 092001 (2002).	+0.019 ± 0.0
200	0 FOCUS	J.M. Link et al. (FOCUS Collab.), Phys. Lett. B 491, 232 (2000).	$+0.048 \pm 0.0$
199	98 E791	E.M. Aitala et al. (E791 Collab.), Phys. Lett. B 421, 405 (1998).	-0.049 + 0.0
		COMBOS average	+0.0020 :

Year	Experiment	CP Asymmetry in the decay mod D0 to π+π-	$[\Gamma(D0)\text{-}\Gamma(D0bar)]/[\Gamma(D0)\text{+}\Gamma(D0bar)]$		
2010	CDF	M.J. Morello (CDF Collab.), Preprint (CHARM 2010),	$+0.0022 \pm 0.0024 \pm 0.0011$		
2008	BELLE	M. Staric et al. (BELLE Collab.), Phys. Lett. B 670, 190 2008).	$+0.0043 \pm 0.0052 \pm 0.0012$		
2008	BABAR	B. Aubert et al. (BABAR Collab.), Phys. Rev. Lett. 100, 061803 (2008).	$-0.0024 \pm 0.0052 \pm 0.0022$		
2002	CLEO	S.E. Csorna et al. (CLEO Collab.), Phys. Rev. D 65, 092001 (2002).	$+0.019 \pm 0.032 \pm 0.008$		
2000	FOCUS	J.M. Link et al. (FOCUS Collab.), Phys. Lett. B 491, 232 (2000).	$+0.048 \pm 0.039 \pm 0.025$		
1998	E791	E.M. Aitala et al. (E791 Collab.), Phys. Lett. B 421, 405 (1998).	-0.049 + 0.078 + 0.030		
1.1		COMBOS average	$+0.0020 \pm 0.0022$		
Year	Experiment	CP Asymmetry in the decay mode D0 to K+K-	$[\Gamma(D0)-\Gamma(D0bar)]/[\Gamma(D0)+\Gamma(D0bar)]$		
2011	CDF	A. Di Canto (CDF Collab.), Preprint (BEAUTY 2011).	$-0.0024 \pm 0.0022 \pm 0.0010$		
2008	BELLE	M. Staric et al. (BELLE Collab.), Phys. Lett. B 670, 190 (2008).	$-0.0043 \pm 0.0030 \pm 0.0011$		
2008	BABAR	B. Aubert et al. (BABAR Collab.), Phys. Rev. Lett. 100, 061803 (2008).	$+0.0000 \pm 0.0034 \pm 0.0013$		
2002	CLEO	S.E. Csorna et al. (CLEO Collab.), Phys. Rev. D 65, 092001 (2002).	$\pm 0.000 \pm 0.022 \pm 0.008$		
2000	FOCUS	J.M. Link et al. (FOCUS Collab.), Phys. Lett. B 491, 232 (2000).	$-0.001 \pm 0.022 \pm 0.015$		
1998	E791	E.M. Aitala et al. (E791 Collab.), Phys. Lett. B 421, 405 (1998).	$-0.010 \pm 0.049 \pm 0.012$		
1995	CLEO	J.E. Bartelt et al. (CLEO Collab.), Phys. Rev. D 52, 4860 (1995).	$+0.080 \pm 0.061$		
1994	E687	P.L. Frabetti et al. (E687 Collab.), Phys. Rev. D 50, 2953 (1994).	+0.024 + 0.084		
_					