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Abstract

Data obtained in the very high energy γ-ray band with the new generation of imaging telescopes, in particular through
the galactic plane survey undertaken by H.E.S.S., low threshold observations with MAGIC and more recently by
operation of VERITAS, have revealed few tens of galactic and extragalactic sources, providing a wealth of information
on a variety of high energy acceleration sites in our universe. Also, the water Cherenkov instrument Milagro has
provided few extended sources after seven years of data integration. An overview of these results with focus on some
of the most recent highlights is given.
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1. Introduction

Almost two decades after the establishment of
the Crab nebula as the first TeV emitting source,
thanks to the pioneering work at the Whipple Ob-
servatory in Arizona [1], the field of very high energy
(VHE) γ-ray astronomy has entered the maturity
age. Although limited in aperture (3-6×10−3 sr, cur-
rently) and duty cycle (∼ 10%), the imaging atmo-
spheric Cherenkov telescopes (IACTs) have proved
to be the most sensitive, thanks to precise angular
reconstruction of the shower origin and to powerful
background rejection capabilities. The new genera-
tion of these instruments has allowed the discovery
of more than 70 galactic and extragalactic sources.
The major contributions have come from H.E.S.S. in
Namibia (system of four 13 m diameter telescopes,
2003), MAGIC in La Palma (single 17 m diameter
dish, 2004), CANGAROO-III in Woomera (three 10
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m diameter dishes, one more pending, 2004), and
VERITAS (four 12 m diameter telescopes, 2006) in
Arizona. Large aperture and duty cycle instruments,
the water Cherenkov detector Milagro (1999-2007)
and the particle counter array Tibet As-γ (1992),
although disposing of a much lower sensitivity, have
also interestingly contributed to the field through
large exposures obtained after few-years scale inte-
gration times. A brief overview of the field, as of
early 2008, is given below.

2. Galactic sources

By late 2002, the TeV sky consisted of only 6 con-
firmed sources, and was dominated by point-like ex-
tragalactic ones. Only one source, the Crab nebula,
was firmly detected in the Galaxy. A major break-
through was accomplished by the 2004-2007 HESS
Galactic Plane Survey (GPS): covering the inner
Galaxy (l ∈ [−85◦, 60◦], b ∈ [−2.5◦, 2.5◦]), this sur-
vey has, up to now, resulted in the discovery of 40
galactic sources and the diffuse emission in the cen-
tral 100 pc of the Milky Way, while confirming 4
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and invalidating 2 sources previously published by
CANGAROO. The Milagro sky survey has resulted
in less prolific but nonetheless interesting discover-
ies: 3 extended sources, 4 less significant hot-spots,
and evidence for diffuse emission along the Galactic
Plane [27,28]. When adding the Crab, 3 discover-
ies 2 and 2 confirmations made in the northern hemi-
sphere by MAGIC and VERITAS, the total number
of known galactic sources is well in excess of 50 (see
Tables 1, 2 and 3). In the following, different galac-
tic VHE source classes will be discussed with focus
on recent results.

2.1. Supernova Remnants

Following the original proposition of W. Baade
and F. Zwicky back in 1934 [2], but based on quan-
titative arguments (energetics, chemical composi-
tion) and diffusive shock acceleration models (e.g.
[54], [55], [47]), shell-type SNRs are considered as
prime acceleration sites for the galactic cosmic-rays,
at most up to the knee (∼ 1015 eV) ([48]). The first
signature of acceleration of cosmic electrons within
shell-type SNR shocks dates back to 1995 [56] when
ASCA observations of SN 1006 rims established the
non-thermal nature of their X-ray emission. γ-ray
emission from SNRs, as a signature of interactions of
accelerated ionic cosmic-rays with internal or nearby
matter have long been sought after by space- and
ground-based instruments. VHE γ-rays were first
detected from RX J1713.7−3946 by the CANGA-
ROO [6] collaboration. The confirmation of this sig-
nal by HESS was made through the realization of
the first ever resolved image in the γ-ray band [7].
The latter image exhibited a clear shell morphol-
ogy, strongly correlated with non-thermal X-rays. γ-
ray emission processes at play in RX J1713.7−3946,
whether leptonic or hadronic, have been and are
still under debate. Some of the pros and cons in
each case are discussed briefly hereafter. The γ- to
X-ray correlation tends to favour leptonic models,
but that is at the expense of a rather low mag-
netic field strength B∼ 10µG, lower than what is
required by models of dynamical field amplification
(see e.g. [50]) in non-linear shocks in order to ex-
plain the observed X-ray filamentary features, i.e.
B∼ 58− 100µG [52]. Hadronic scenarios face also
difficulties –e.g. the required mean pre-shock hy-
drogen number density n∼ 1 cm−3 violates the up-

2 the detection of one source, Cyg−X1, needs still confir-

mation, see table 1.
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Fig. 1. . Smoothed VHE image of RX J0852.0−4622 obtained

by HESS, shown together with X-ray contours from the

ROSAT All Sky Survey > 1.3 keV [11].

per limit n< 0.02 cm−3 implied by the absence of
thermal X-rays [51]– and have to recourse to quite
low e−/p ratios [49], but they seem to better fit
the shape of the VHE spectrum [8]. On the other
hand a detailed modeling of the interstellar radia-
tion field for the calculation of the inverse Comp-
ton (IC) spectrum [53] improves the fit to leptonic
models, though not for the latest published spec-
trum [9]. The uncertainties on age (1-10 kyr) and
distance (1-6 kpc) leave also some margin to differ-
ent models; hence, for the time being, no clear-cut
distinction between them can be made. The situa-
tion is analog for the two other spatially resolved γ-
ray SNRs, RX J0852.0−4622 and RCW 86, recently
reported by HESS [12,11]. The former shows also a
strong correlation with non-thermal X-rays and an
absence of thermal X-rays, but has a thiner VHE
shell morphology (Fig. 1). RCW 86 is at variance
with the two other TeV shell-type SNRs in that it
exhibits both thermal and non-thermal X-rays.

In the case of the very young and radio-bright
SNR, Cassiopeia A –point-like in γ-rays, detected
initially by the HEGRA collaboration [13] and con-
firmed recently by MAGIC [15]– it seems again dif-
ficult to determine unambiguously the nature/loci
of the emitting particles with the current γ-ray
data. Neutrinos, expected as secondary products of
cosmic-ray interactions with ambient matter, could
be used to probe decisively the hadronic component
of cosmic accelerators (see e.g. [58]). Estimation
of event rates for the brightest γ-ray SNRs, based
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on their VHE flux measurements, seem, however,
to imply the necessity of very large volume detec-
tors: indeed the potential signal to noise ratios for
a 1 km3 class neutrino detector seem to be low,
e.g. the expected signal and background rates for
RX J1713.7−3946, for an integration time of 5
years, are of order of 14 and 41, respectively [57].

VHE γ-ray observations of SNRs interacting with
high density (i.e. n> 103 cm−3) molecular clouds
in their vicinity is an alternative probe of ionic
acceleration by SNR shock waves. In this regard,
older SNRs (i.e. with age> few 104 yr) are poten-
tially attractive targets since accelerated electrons
must have lost much of their energy through ra-
diative cooling and should not reach multi-TeV
energies [59]. The VHE loci of W41/HESS J1834-
026 [37,16], IC 443/MAGIC J0616+225 [14], also re-
ported by VERITAS [17], and W 28/{HESS J1800-
240, HESS J1801-233} [18], are coincident with
such molecular clouds and suggest that these ob-
jects are accelerating ionic cosmic-rays. The pres-
ence of OH masers (tracers of shocked molecular
matter) in IC 443 and the northeastern region of
W 28 supports this hypothesis. The VHE emission
reported recently from another SNR/molecular
cloud association with a much younger object,
CTB37A/HESS J1714-385 [20] enhances further
this class of possible hadronic accelerators, al-
though, a PWN-type contribution is also possible
due to the discovery of an extended non-thermal
X-ray source near the VHE peak. Another new can-
didate for this class is the formerly ’dark’ source
(see below), HESS J1731−347, recently identified
with a ∼ 30 kyr SNR, G353.6−0.7 [22].

2.2. Pulsar Wind Nebulae (PWNe)

Relativistic particles of the shocked winds of pul-
sars shine through synchrotron and IC radiation
from radio to γ-rays and form Plerions (Pleres Plera
or filled bags). The Chandra and XMM-Newton
imaging and spatially resolved spectroscopy of X-
ray synchrotron nebulae have provided a wealth of
details on pulsar winds and their interactions with
the medium (e.g., [23]). Two morphological types
have emerged: those which show a toroidal struc-
ture around the pulsar, with one or two jets along
the torus axis, and those dominated by a cometary
structure, with the pulsar close to the comet apex.
Also, the spectral softening of the extended emis-
sion as a function of distance to the pulsar, observed

Table 1
Class A: Galactic sources with a firmly established coun-

terpart and for which the VHE emission origin/morphology

(not necessarily the emission process) is also fairly well iden-
tified; see text.

VHE Class Object discoverya

Shell RX J0852.0−4622 CANGAROO [5,10,11]

Shell RX J1713.7−3946 CANGAROO [6–8]

Shell RCW 86 HESS [12]

SNR Cassiopeia A HEGRA [13]

PWN Crab nebula Whipple[1,3,4]

PWN G 0.9+0.1 HESS [33]

PWN MSH 15−52 HESS (J1514−591) [34]

PWN Vela X HESS (J0835−455) [35]

PWN G 18.0−0.7 HESS (J1825−137) [36,37]

PWN K3/Kookaburra HESS (J1420−607) [38]

PWN G 21.5-0.9 HESS [40]

PWN PSR J1718−3825 HESS (J1718−385) [39]

PWN PSR J1809−1917 HESS (J1809−193) [39]

PWN† Kes 75 HESS [40]

Binary PSR B1259−63 HESS [41]

Binary LS 5039 HESS [42,43]

Binary LSI +61 303 MAGIC [44,45]

Binary Cyg−X1‡ MAGIC [46]

aFor extended PWNe the best fitted position of the source is
quoted as well. Additional references to the discovery paper
are given when relevant, e.g., confirmation of the source or
discovery of important features (morphology, spectrum).
†Contribution from the SNR shell is not excluded for Kes 75.
‡The firm detection of this source is not established yet.

for many PWNe, has been successfully interpreted
as the synchrotron cooling of the X-ray emitting
electrons.

The first source discovered in the VHE domain,
the Crab nebula, is a plerion and still exhibits a
point-like emission to the precision of the current
instruments (few arc-minutes). As was remarkably
soon predicted by [60], the study of its synchrotron
and IC components opened the way to the measure-
ment of the magnetic field strength within the neb-
ula [61]. The HESS GPS has revealed a large number
of PWNe, most of which are very extended and as-
sociated to energetic and middle-aged pulsars, with
age ∼ 104−105 yr. HESS J1825−137 can be consid-
ered as the prototype of such objects: its γ-ray emis-
sion is extended, with a characteristic size of 0.3◦,
and offset to the south of the pulsar B 1823−13; the
latter has spin-down characteristic age and power of
τC = 21000 yr and Ė = 1035 erg s−1, respectively.
It is remarkable that the X-ray nebula exhibits ex-
actly the same feature and is offset to the south of
the pulsar, except that its extension is of order of a
few arc-minutes rather than a fraction of a degree.
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Table 2
Class B: Galactic sources with a either an identified or a

plausible counterpart but for which further data is required

to firmly establish the association or type of emission; see
text. The VHE types in last column are tentative scenarios

put forward by different authors and are not exclusive of
other possibilities; MoC-SNR stands for molecular cloud-

SNR associations; OpC: open cluster; Lept.: leptonic

Objecta Poss. counterpart(s) Type

MAGIC J0616+225§ IC 443 MoC-SNR [14]

HESS J1023−575 Westerlund2 OpC wind

HESS J1303−631 PSR J1303−6315 PWN

HESS J1357−645 PSR J1357−6429 PWN

HESS J1418−609 G 313.3+0.1 PWN

HESS J1616−508† PSR J1617−5055 PWN/SNR

HESS J1640−465 § G 338.3−0.0 PWN/SNR

HESS J1702−420 PSR J1702−4128 PWN

HESS J1713−381§ CTB37 B MoC-SNR

HESS J1714−385§ CTB37 A PWN/MoC-SNR

HESS J1731−347†§ G 353.6−0.7 Shell

HESS J1745−290 SgrA?/G 359.95−0.04 BH/PWN

HESS J1804−216§ G 08.7-0.1 PWN/SNR

HESS J1813−178†§ G 12.8−0.0 PWN/SNR

HESS J1800−240‡§ W 28 south MoC-SNR

HESS J1801−233§ W 28 north-east MoC-SNR

HESS J1834−026§ W41 MoC-SNR

HESS J1837−069† PSR J1838−0655 PWN

HESS J1857+026† PSR J1856+0245 PWN

HESS J1912+101 PSR J1913+1011 PWN

TeV J2032+4130† extended X-ray Pevatron/Lept. [26]

aReferences for the HESS sources are available at http://
www.mpi-hd.mpg.de/hfm/HESS/public/HESS catalog.htm;
†These sources were initially classified as dark.
§These sources have a rather well identified counterpart,
except that the emission origin is still ambiguous.
‡This source splits in three sub-sources, J1800−240 A, B
and C.

This can be naturally explained in terms of the cool-
ing time of particles in the estimated average nebu-
lar magnetic field B∼ 10µG: the X-ray generating
electrons have higher energies than those responsi-
ble via IC for the VHE γ-rays, hence they cool faster
and have a shorter range, whereas the latter include
relic particles, i.e. those injected and accelerated at
early epochs of the pulsar activity [62]. This inter-
pretation has been further supported by the dis-
covery of the spectral softening of the VHE nebula
as a function of the distance to the pulsar, analog
to that seen in X-rays [63]. The offset of the neb-
ula with respect to the pulsar can be understood in
terms of the displacement caused by an anisotropic
reverse shock, itself due to the explosion of the pro-
genitor in an inhomogeneous medium. This expla-

nation was first proposed by [64] for Vela X, another
asymmetrical PWN in radio and X-rays, which is,
as has been demonstrated by HESS [35], also offset
in VHE γ-rays. A number of other extended offset
nebulae have been discovered by HESS and the sys-
tematic search of molecular clouds in their vicinity
[65] has revealed in many cases clouds at compat-
ible kinematic distances to their associated pulsar,
as candidates to explain their peculiar morphology.
Another key point in the study of these middle-aged
nebulae is the possibility to access both to their ’cur-
rent’ state through X-rays (fresh short-lived parti-
cles), and to their past history and evolution, e.g.
those of the pulsar and magnetic field, through the
the VHE emission (relic electrons) [65,66].

In this context the young Crab nebula appeared as
a rather particular VHE source 3 . Very recently, two
other very young nebulae were discovered by HESS:
G 21.5−0.9 which harbors the second most energetic
pulsar known in the Galaxy (after the Crab) and
Kes 75, associated to the 325 ms, X-ray only, pul-
sar, PSR J1846-258 [40]. Despite their similar young
ages to the Crab nebula, G 21.5−0.9 and Kes 75 ex-
hibit much smaller X-ray to γ-ray luminosity ratios
and hence a much lower nebular field. Also both ob-
jects are classified as composite SNRs and, as such,
the possibility of VHE radiation from particles ac-
celerated at the forward shock of the freely expand-
ing shells should be considered. While this possibil-
ity remains open for Kes 75, the low gas densities
inferred through thermal X-ray measurements for
G 21.5−0.9 make the contribution of the SNR shell
to its γ-ray emission unlikely.

2.3. γ-ray binaries

Although a plethora of binary systems are
X-ray emitters, only three objects have been
firmly detected in the VHE band up to now:
PSR B1259−63/SS 2883, LS 5039 both reported by
HESS and LSI +61 303, discovered by MAGIC [44].
PSR B1259−63 is a 48 ms radio pulsar, but for
LS 5039 and LSI +61 303 the precise nature of the
compact object is not known: the 4 M� upper limit
on their mass is consistent both with neutron stars
and low mass black holes. These two systems are
much closer binary systems with periods of 3.9 and
26.5 days, respectively, as compared to the 3.4 yr
period of PSR B1259−63/SS 2883.

3 this was already the case at other wavelengths
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The VHE emission of LS 5039 is clearly periodic,
with enhanced and harder emission at the inferior
conjunction. The variability of LSI +61 303 has been
recently confirmed by VERITAS [45], but it is not
clear yet if its emission is strictly periodic. The main
question regarding these sources is whether the
relativistic particles come from accretion-powered
jets or from a rotation-powered pulsar wind as for
PSR B1259−63/SS 2883. Also, although the inter-
action of the relativistic wind of the latter should
play a major role, the precise emission mechanism,
whether leptonic or hadronic, is unknown (see
e.g. [67]).

The marginal detection of Cyg−X1, a >13M�
black hole binary system, recently reported by
MAGIC [46], if confirmed, is interesting in this
context, since it should require rather an accretion-
powered jet model.

2.4. Unidentified Sources

It is remarkable that most of the galactic sources
are extended and many of them show a featureless
morphology ; this precisely renders their identifica-
tion difficult, except when a clear correlation with
an object at other wavelengths exists, and/or a co-
herent multi-wavelength model is found. Finding
the counterpart of a point-like source is, in principle,
straightforward (when it exits), but the identifica-
tion of the VHE emission process requires again a
coherent model. Given these boundary conditions,

Source Comments

HESS J0632+057 point-like, near Monoceros Loop [31]

HESS J1427−608 ext., PWN compatible [32]

HESS J1614−518 ext., soft [32]

HESS J1626−490 ext. hard [37]

HESS J1632−478 ext., IGR srce, no MOR [37]

HESS J1634−472 ext., soft, SNR, no MOR [37]

HESS J1708−410 ext., PWN compatible [37]

HESS J1745−303 ext., MoC-SNR to the north [37,21]

HESS J1841−055 ext. [32]

HESS J1858+020 ext. [32]

MGRO J1908+06 HESS J1908+063/GRO srce [30,27]

MGRO J2019+37 ext. > 1◦ [27]

MGRO J2031+41 ext. [27]

Table 3

Class C: Galactic sources for which no clear counterpart
exists at other wavelengths: ’ext.’ stands for extended, hard

means a photon spectral index Γ < 2.2 and ’no MOR’ is
to indicate the morphological incompatibility of the source
with lower-wavelength objects, if any in its line of site.

the following classes of can be defined:
A) Sources with a firmly established counterpart
and for which the VHE emission origin/morphology
(not necessarily the emission process) is also fairly
well identified, e.g the Crab nebula, TeV shell-type
SNRs and γ-ray binaries fall into this class.
B) Sources with either an identified or a plausible
counterpart but for which further data is required
to firmly establish the association or the type of
emission, e.g., PWN- and/or SNR-type.
C) Sources with no plausible counterparts (or ’dark’
sources).

The majority of the galactic sources fall into the
last two classes (Tables 2 and 3) and hence many are
still considered as unidentified. TeV 2032+4130, the
first unidentified source discovered by HEGRA [24]
in 2002, has been confirmed by MAGIC [25]. Re-
cently an extended X-ray source matching the posi-
tion of TeV J2032+413 was detected through deep
XMM-Newton observations [26] and consequently
this source is no more considered as a dark one,
but is classified as B. This is the case also for five
HESS sources, which were previously classified as
dark: HESS J1731−347 has now an old shell-type
SNR counterpart whereas a young SNR has been
discovered and associated to HESS J1813−178; in
addition two young and energetic pulsars have
been discovered in the vicinity (line of sight)
of HESS J1837−069 and HESS J1857+026, and
HESS J1616−508 has now a faint X-ray coun-
terpart. Among the three unidentified sources
reported by Milagro [27], MGRO J2019+37 and
MGRO J1908+06 have been recently confirmed by
Tibet As-γ [29] and HESS [30], respectively, but
remain still unidentified.

The dark sources are prime hadronic accelerator
candidates. However, as noted first by [65,66], due
to the large lifetime of VHE emitting electrons (up
to few 10× kyr depending on the nebular field) the
ratio of the X-ray luminosity to the γ-ray luminosity
is a decreasing function of the system age and hence
one expects TeV PWNe with so faint X-ray counter-
parts that they could well be below the sensitivity
threshold of current X-ray instruments. Hence it is
likely that some of the dark sources are indeed “γ-
ray PWNe” without multi-wavelength counterpart.

It is also noteworthy that the extended class B
source HESS J1023−575 is in coincidence with the
second most massive young cluster in the Milky
Way, Westerlund 2. Strong shocks created through
the colliding winds of massive stars are believed to
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be able to accelerate particles up to TeV energies
and their collective effects can in principle provide
sufficient energy for the observed emission. If so, a
new class of cosmic ray accelerators should emerge
through observations of other clusters if this type.

2.5. Galactic Center and its neighbourhood

The point-like emission from the direction of
Sgr A complex was discovered already 4 years ago
by CANGAROO [69], and subsequently detected
by Whipple [68], and HESS [70] collaborations; the
latter has produced the most consistent measure-
ments of its signal and spectrum. Due to the variety
of potential TeV emitting sources –including the
massive black hole Sgr A?– the identification of the
Galactic Center TeV emission origin is a difficult
task. Two paths have been followed by HESS: si-
multaneous observations of X-ray flares of Sgr A?

with Chandra and the improvement of the source
(HESS J1745−290) localisation. The former ap-
proach has resulted in an upper-limit on the flaring
TeV component with respect to the steady emission
during the observed X-ray flare [71] , while the lat-
ter has allowed to constrain the source localisation
with comparable and extremely low statistical and
systematic errors –better than 6′′. This precision
is enough to exclude the SNR Sgr A East as the
dominant source of the TeV emission, leaving the
PWN candidate G 359.95−0.04 and Sgr A? as the
most likely candidates [72]. The dark matter inter-
pretation is also clearly disfavoured: the measured
power-law spectrum seems quite incompatible with
typical (quark or gluon-fragmentation type) neu-
tralino annihilation scenarios [74].

HESS J1745−290 lies above a diffuse emission
along the Galactic ridge. HESS data have shown
a clear correlation with the giant molecular clouds
of the central ∼100 pc of the Galaxy [73], and a
spectrum which is harder (index of 2.3) than that
expected for γ-rays, if they were produced through
interactions of cosmic rays with the same spectrum
as the one local to the solar system. One elegant ex-
planation for this is the reduced effects of diffusion
and escape due to the proximity of accelerators and
targets. Another feature of the γ-ray emission is
its deficit as compared to the density of molecular
clouds around l '1.5◦. This has been interpreted in
terms of a time limited diffusion range of the cosmic
rays under the assumption that they were acceler-
ated only ’recently’ (some 10000 years ago) near the

Table 4
VHE γ-ray emitting AGN, as of early 2008, ordered by red-

shift. The last column gives the reference to the discovery

publication and, when relevant, to the confirmation papers.

Object z Class Discovery Ref.

M 87 0.004 FRI HEGRA 2003 [80,81]

Mrk 421 0.031 HBL Whipple 1992 [82,83]

Mrk 501 0.034 HBL Whipple 1996 [84,85]

1ES 2344+514 0.044 HBL Whipple 1998 [86,87]

Mrk 180 0.046 HBL MAGIC 2006 [88]

1ES 1959+650 0.047 HBL TA 2002 [89–91]

BL Lac 0.069 LBL MAGIC 2006 [92]

PKS 0548-322 0.069 HBL HESS 2006 [93]

PKS 2005-489 0.071 HBL HESS 2005 [94]

RGB 0152+017 0.080 HBL HESS 2008 [95]

W Comae 0.102 IBL Whipple 2008 [97]

PKS 2155-304 0.116 HBL Durham 1999 [96,98]

H 1426+428 0.129 HBL Whipple 2002 [99–101]

1ES 0806+524 0.138 HBL Whipple 2008 [102]

1ES 0229+200 0.140 HBL HESS 2007 [103]

H 2356-309 0.165 HBL HESS 2005 [104]

1ES 1218+304 0.182 HBL MAGIC 2005 [105]

1ES 1101-232 0.186 HBL HESS 2005 [104]

1ES 0347-121 0.188 HBL HESS 2007 [106]

1ES 1011+496 0.212 HBL MAGIC 2007 [107]

PG 1553+113 > 0.25 HBL HESS 2005 [108]

3C 279 0.536 FSRQ MAGIC 2007 [109]

S5 0716+71 unknown HBL MAGIC 2008 [110]

Galactic Center [73], but the question remains open
to alternative explanations such as assuming that
the γ-ray emission is a superposition of point-like
sources distributed according to the distribution of
the molecular gas.

3. Extragalactic Sources

The first VHE emitting extragalactic source,
Mrk 421, was discovered back in 1992 [82]. There
has been a tremendous progress in this area since
2003 and, as of early 2008, 23 extragalactic sources
are known to be VHE γ-ray emitters. All of these
sources but one are blazars, i.e. belong to the class
of radio-loud Active Galactic Nuclei (AGN) with
one of radio jets pointing towards the observer
at small angles (∼ few degrees). The broad band
spectra of blazars is characterized by two broad
peaks, in mm−soft Xrays and MeV−GeV bands,
respectively. The lower energy peak is understood
as synchrotron emission of energetic leptons within
the relativistic jet, and the generally agreed upon
origin for the second component is IC scattering
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of either synchrotron photons (SSC) 4 or ambient
photons (EC) 5 by the same population of leptons.
Alternatively, hadronic models are put forward for
the higher energy component; however the observed
strong correlations between the X-ray and the γ-ray
emissions favour rather leptonic models 6 .

As listed in Table 4, the High frequency peaked
BL Lac objects, or HBLs, i.e. those for which the
lower energy component peaks in X-rays, are the
most prominent TeV emitting blazars. The three
exceptions are: the BL Lac itself, classified as an LBL
(Low freq. BL Lac), W Comae, an Intermediate BL
Lac object, and 3C 279 a flat spectrum radio quasar,
or FSRQ.

M 87, the well-known nearby FRI radio-galaxy,
is the first non-blazar source and its detection is
of particular interest. Its two-day time variability
scale, first measured by HESS [81] and recently con-
firmed by VERITAS [76], constrains the size of the
emission region ∼ 5δRs, dramatically close to that
of the black hole Schwarzschild radius Rs, the ex-
pected Doppler factor δ being quite small given the
large declination angle of M 87 jet to the line of sight
(∼ 30◦).

There have been two recent highlights in
blazar observations: 1) the very fast variability
of PKS 2155−304 observed by HESS during a
dramatic flaring episode in July 2006; the best
measured individual flare rise time is of 173±23
seconds [77] and implies, within one-zone SSC mod-
els when using causality, a huge Doppler factor of
order 100 which is in conflict with those deduced
from the unification models between blazars and
radiogalaxies[79]; this requires the development of
inhomogeneous models; 2) evidence reported by
MAGIC for time lag between high- and low-energy
band photons during 2 flares of Mrk 501, which
may be an indication of progressive acceleration of
leptons within the jet [78].

Beyond the understanding of blazars themselves,
measurement of their VHE spectrum and its atten-
uation through pair creation due to Extragalactic
Background Light (EBL) can be used to constrain
the EBL density itself and, thereby, the star forma-
tion history of the universe. The most recent result
is the discovery of VHE γ-rays from 3C 279 by Magic

4 for Self-Synchrotron Compton
5 for External Compton
6 There exists however a noteworthy exception in the history

of the field: a TeV flare without any counterpart in X-rays
was detected during observations of 1ES 1959+650 on June

4, 2002 [75].

at z = 0.536. The HESS detections of hard spectra
from 1ES 1101−232 (z = 0.186) and H 2356−309 (z
= 0.165) implied already a low level of EBL in the
optical/near-infrared wavelengths [104], very close
to the lower limit given by the integrated light of re-
solved galaxies. The detection of 3C 279 represents
a major step in redshift and should put severe limits
in the sub-micron to 2µ band. It is remarkable that
the possibility of constraining the EBL through γ-
ray measurements was predicted more than 15 years
ago following the detection by Egret of the same
source, 3C 279 [111].

4. Summary

The field of VHE γ-ray astrophysics has gone
through a dramatic evolution since 2004, thanks to
the high sensitivity of the new generation IACTs.
The HESS GPS represents a major step in that it
has revealed, beyond the large number of sources,
diverse classes of γ-ray emitting galactic objects and
acceleration sites: young shell-type SNRs, SNRs
interacting with molecular clouds, middle-aged off-
set PWNe, very young composite PWNe and γ-ray
binaries. Given the large number of still unidenti-
fied sources, other potential classes of sources could
emerge, including the promising case of massive star
clusters. The increasing number of blazar sources in
the extragalactic domain allows now for population
studies, and one non-blazar source, M 87 is under
scrutiny, in particular by VERITAS. Also, while the
early attempts to constrain the intergalactic radia-
tion field suffered from the very limited number of
sources and a reduced range in redshift, the grow-
ing number of objects, and especially the detection
of 3C 279 obtained at a low energy threshold by
MAGIC, have definitely opened the path towards
the cosmological application of γ-ray astrophysics.
There is no doubt that VHE γ-ray astronomy is
now a genuine branch of astronomy with multiple
connections to cosmology and fundamental physics.
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