Status of Very High Energy γ -ray Astronomy as of early 2008 # Arache Djannati-Ataï Astroparticule et Cosmologie (APC), CNRS, Universite Paris 7 Denis Diderot, Paris, France 1 #### Abstract Data obtained in the very high energy γ -ray band with the new generation of imaging telescopes, in particular through the galactic plane survey undertaken by H.E.S.S., low threshold observations with MAGIC and more recently by operation of VERITAS, have revealed few tens of galactic and extragalactic sources, providing a wealth of information on a variety of high energy acceleration sites in our universe. Also, the water Cherenkov instrument MILAGRO has provided few extended sources after seven years of data integration. An overview of these results with focus on some of the most recent highlights is given. $Key\ words$: gamma rays: observations, intergalactic medium, supernovae: general, cosmic rays: general, X-rays: binaries, pulsars: general PACS: # 1. Introduction Almost two decades after the establishement of the Crab nebula as the first TeV emitting source, thanks to the pioneering work at the Whipple Observatory in Arizona [1], the field of very high energy (VHE) γ -ray astronomy has entered the maturity age. Although limited in aperture $(3-6\times10^{-3} \text{ sr, cur-}$ rently) and duty cycle ($\sim 10\%$), the imaging atmospheric Cherenkov telescopes (IACTs) have proven to be the most sensitive, thanks to precise angular reconstruction of the shower origin and to powerfull background rejection capabilities. The new generation of these instruments has allowed the discovery of more than 70 galactic and extragalactic sources. The major contributions have come from H.E.S.S. in Namibia (system of four 13 m diameter telescopes, 2003), MAGIC in La Palma (single 17 m diameter dish, 2004), CANGAROO-III in Woomera (three 10 By late 2002, the TeV sky consisted of only 6 confirmed sources, and was dominated by point-like extragalactic ones. Only one source, the Crab nebula, was firmly detected in the Galaxy. A major breakthrough was accomplished by the 2004-2007 HESS Calactic Plane Survey (GPS): covering the inner Galaxy ($-85^{\circ} < l < 60^{\circ}, -2.5^{\circ} < b < 2.5^{\circ}$), this survey has up to now resulted in the discovery of 40 galactic sources, as well as of the diffuse emisson in the central 100 pc of the Milky Way, while confirm- m diameter dishes, one more pending, 2004), and VERITAS (four 12 m diameter telescopes, 2006) in Arizona. Large aperture and duty cycle instruments, the water Cherenkov detector MILAGRO (1999-2007) and the particle counter array Tibet As- γ (1992), although disposing of a much lower sensitivity, have also interestingly contributed to the field through large exposures obtained after fewyears scale integration times. A biref overivew of the field, as of early 2008, is given below. ^{2.} Galactic sources Email address: djannati@apc.univ-paris7.fr (Arache Diannati-Ataï) $^{^{\}rm 1}$ UMR 7164 (CNRS, Université Paris VII, CEA, Observatoire de Paris) ing 4 and infirming 2 previously claimed sources. When adding the six discoveries ² and two confirmations made in the northern hemisphere by MAGIC, Milagro and Veritas, and the Crab, the total number of known galactic sources reaches 53. In the following, different galactic VHE source classes will be discussed with focus on recent results. #### 2.1. Supernova Remnants Following the original proposition of W. Baade and F. Zwicky back in 1934 [2], but based on quantitative arguments (energetics, chemical composition) and diffusive shock acceleration models (e.g. [53], [54], [46]), shell-type SNRs are considered as prime acceleration sites for the galactic cosmic-rays, at most up to the knee ($\sim 10^{15} \text{ eV}$) ([47]). The first signature of acceleration of cosmic electrons within shell-type SNR shocks dates back to 1995 [55] when ASCA observations of SN 1006 rims established the non-thermal nature of their X-ray emission. γ -ray emission from SNRs, as a signature of interactions of accelerated ionic cosmic-rays with internal or nearby matter have long been sought after by space- and ground-based instruments. VHE γ -rays were first detected from RX J1713.7-3946 by the CANGA-ROO [6] collaboration. The confirmation of this signal by HESS was made through the realization of the first ever resolved image in the γ -ray band [7]. The latter image exhibited a clear shell morphology, strongly correlated with non-thermal X-rays. γ ray emission processes at play in RX J1713.7-3946, whether leptonic or hadronic, have been and are still under debate. Some of the pros and cons in each case are discussed breifly hereafter. The γ - to X-ray correlation tends to favour leptonic models, but that is at the expense of a rather low magnetic field strength $B \sim 10 \,\mu\text{G}$, lower than what is required by models of dynamical field amplification (see e.g. [49]) in nonlinear shocks in order to explain the observed X-ray filamentary features, i.e. $B \sim 58 - 100 \,\mu\text{G}$ [51]. Hadronic scenarios face also difficulties -e.g. the requird mean pre-shock hydrogen number density n \sim $1 \,\mathrm{cm^{-3}}$ vilolates the upper limit $n < 0.02 \,\mathrm{cm^{-3}}$ implied by the absence of thermal X-rays [50]— and have to recourse to quite low e⁻/p ratios [48], but they seem to better fit the shape of the VHE spectrum [8]. On the other hand a detailed modeling Fig. 1. . Smoothed VHE image of RX J0852.0-4622 obtained by HESS, shown together with X-ray contours from the ROSAT All Sky Survey >1.3 keV [11]. of the interstellar radiation field for the calculation of the inverse compton (IC) spectrum [52] improves the fit to leptonic models, though not for the latest published spectrum [9]. The uncertainties on age (1-10 kyr) and distance (1-6 kpc) leave also some margin to different models; hence, for the time being, no clear-cut distinction between them can be made. The situation is analog for the two other spatially resolved γ -ray SNRs, RX J0852.0-4622 and RCW 86, recently reported by HESS [12,11]. The former shows also a strong correlation with nonthermal X-rays and an absence of thermal X-rays, but has a thiner VHE shell morphology, (Fig. 1). RCW 86 is at vairance with the two other TeV shelltype SNRs in that it exhibits both thermal and nonthermal X-rays. In the case of the very young and radio-bright SNR, Cassiopeia A, –point-like in γ -rays, detected initially by the HEGRA collaboration [13] and confirmed recently by MAGIC [15]– it seems again difficult to determine unambiguously the nature/loci of the emitting particles with the current γ -ray data. Neutrinos, expected as secondary products of cosmic-ray interactions with ambiant matter, could be used to test the hadronic component of cosmic accelerators decisively (see e.g. [57]). Estimation of event rates for the brightest γ -ray SNRs based on their VHE flux measurements seem however to imply the necessity of very large volume detectors: indeed the potential signal to noise ratios for a 1 km³ class neutrino detector seem to be $[\]overline{^2}$ 4 less significant MILAGRO hotspots are not included here; the detection of Cyg-X1 needs still confirmation, see table 1. low, e.g. the expected signal and background rates for RX J1713.7—3946, for an integration time of 5 years, are of order of 14 and 41, respectively [56]. VHE γ -ray observations of SNRs interacting with high density (i.e. $n > 10^3$ cm⁻³) molecular clouds in their vicinity is an alternative probe of ionic acceleration by SNR shock waves. In this regard, older SNRs (i.e. with age $> \sim$ few 10^4 yr) are potentially attractive targets since accelerated electrons must have lost much of their energy through radiative cooling and should not reach multi-TeV energies [58]. The VHE loci of W41/HESS J1834-026 [36,16], IC 443/MAGIC J0616+225 [14], also reported by VERITAS [17], and W 28/{HESS J1800-240, HESS J1801-233 [18], are coincident with such molecular clouds and suggest that these objects are accelerating ionic cosmic-rays. The presence of OH masers (tracers of shocked molecular matter) in IC 443 and the northeastern region of W 28 supports this hypothesis. The VHE emission reported recently from another SNR/molecular cloud association with a much younger object, namely CTB37A/HESS J1714-385 [20], and the probable association of the northern part of HESS J1745-303 with SNR G359.1-0.5 [21], enhance further this class of possible hadronic accelerators. Another new candidate for this class is the foremerly 'dark' source (see below), HESS J1731-347, recently identified with a ~ 30 kyr SNR, G353.6-0.7 [22]. # 2.2. Pulsar Wind Nebulae (PWNe) Relativistic particles of the shocked winds of pulsars shine through synchroton and IC radiation from radio to γ -rays and form Plerions (*Pleres Plera* or filled bags). The Chandra and XMM-Newton imaging and spatially resolved spectroscopy of Xray synchrotron nebulae have provided a wealth of details on pulsar winds and their interactions with the medium (e.g., [23]). Two morphological types have emerged: those which show a toroidal structure around the pulsar, with one or two jets along the torus axis, and those dominated by a cometary structure, with the pulsar close to the comet apex. Also, the spectral softening of the diffuse emission as a function of distance to the pulsar, observed for many PWNe, has been successfully interpreted as the synchrotron cooling of the X-ray emitting electrons. The first source discovered in the VHE domain, the Crab nebula, is a plerion and still exhibits a Table 1 Class (A): Galactic sources with a firmly established counterpart and for which the VHE emission origin/morphology (not necessarily the emission process) is also fairly well identified; see text. | VHE Class | Object | ${ m discovery}^a$ | |-----------------|---------------------|--------------------------| | Shell | RXJ0852.0-4622 | CANGAROO [5,10,11] | | Shell | RX J1713.7 - 3946 | CANGAROO [6–8] | | Shell | RCW 86 | HESS [12] | | SNR | Cassiopeia A | HEGRA [13] | | PWN | Crab nebula | Whipple[1,3,4] | | PWN | G0.9+0.1 | HESS [32] | | PWN | $\rm MSH15{-}52$ | HESS (J1514-591) [33] | | PWN | Vela X | HESS (J0835-455) [34] | | PWN | G18.0-0.7 | HESS (J1825-137) [35,36] | | PWN | K3/Kookaburra | HESS (J1420-607) [37] | | PWN | G21.5-0.9 | HESS [39] | | PWN | PSR J1718 - 3825 | HESS (J1718-385) [38] | | PWN | PSR J1809-1917 | HESS (J1809-193) [38] | | PWN^{\dagger} | $\mathrm{Kes}75$ | HESS [39] | | Binary | PSR B1259-63 | HESS [40] | | Binary | LS 5039 | HESS [41,42] | | Binary | LSI +61 303 | MAGIC [43,44] | | Binary | $Cyg-X1^{\ddagger}$ | MAGIC [45] | ^aFor extended PWNe the best fitted postion of the source is quoted as well. Additional references to the discovery paper are given when relevant, e.g., confirmation of the source or discovery of important features (morphology, spectrum). [†]Contribution from the SNR shell is not excluded for Kes 75. [‡]The firm detection of this source is not established yet. point-like emission to the precision of the current instruments (few arcminutes). As was remarkably soon predicted by [59], the study of its synchrotron and IC components opened the way to the measurement of the magnetic field strength within the nebula [60]. The HESS GPS has revelaed a large number of PWNe, most of which are very extended and associated to energetic and middle-aged pulsars, with age $\sim 10^4 - 10^5$ yr. HESS J1825-137 can be considered as the prototype of such objects: its γ -ray emission is extended, with a characteristic size of 0.3°, and offset to the south of the pulsar B 1823-13; the latter has spin-down characteristic age and power of $\tau_C = 21000 \text{ yr and } \dot{E} = 10^{35} \text{ erg s}^{-1}$, respectively. It is remarkable that the X-ray nebula exhibits exactty the same feature and is offset to the south of the pulsar, except that its extension is of order of a few arcminutes rather than a fraction of a degree. This can be naturally explained in terms of the cooling time of particles in the estimated average nebular magnetic field B $\sim 10 \,\mu\text{G}$: the X-ray generating electrons have higher energies than those responsible via IC for the VHE γ -rays, hence they cool faster Table 2 Class (B): Galactic sources with a plausible counterpart but for which further data is required to firmly establish the association or type of emission; see text. The VHE types in last column are tentative scenarios put forward by different authors and are not exclusive of other possibilities; MoC-SNR stands for molecular cloud-SNR associations; OpC stands for open cluster. | $\overline{\mathrm{Object}^a}$ | Poss. counterpart(s) | Type | |-------------------------------------------------|-------------------------------------|---------------------------------------| | MAGIC J0616+225 | MoC-SNR [14] | | | $\rm HESSJ1023{-}575$ | Westerlund2 | OpC wind | | ${\rm HESSJ1303-631}$ | PSR J1303-6315 | PWN | | ${\rm HESSJ1357{-}645}$ | $\operatorname{PSRJ1357}{-6429}$ | PWN | | $\rm HESSJ1418{-}609$ | G313.3+0.1 | PWN | | $\rm HESSJ1616{-}508^{\dagger}$ | $\mathrm{PSR}\mathrm{J}1617{-}5055$ | PWN/SNR? | | ${\rm HESSJ1640-465}$ | G338.3-0.0 | PWN/SNR | | ${\rm HESSJ1702-}420$ | $\mathrm{PSR}\mathrm{J}1702{-}4128$ | PWN | | $\rm HESSJ1713{-}381$ | ${\rm CTB37B}$ | PWN/MoC-SNR | | ${\rm HESSJ1714-385}$ | ${ m CTB37A}$ | MoC-SNR+Maser | | $\rm HESSJ1731{-}347^{\dagger}$ | G353.6-0.7 | Shell | | ${\rm HESSJ1745-290}$ | $SgrA^*/G359.95-0.04$ | 4 BH/PWN | | ${\rm HESSJ1804-216}$ | G 08.7-0.1 | PWN/SNR | | $\rm HESSJ1813{-}178^{\dagger}$ | G 12.8 - 0.0 | PWN/SNR | | $\rm HESSJ1800{-}240^{\ddagger}$ | W 28 south | ${\color{red}{\text{Moc-SNR+Maser}}}$ | | ${\rm HESSJ1801-233}$ | W 28 | Moc-SNR | | ${\rm HESSJ1834-026}$ | W41 | Moc-SNR | | $\rm HESSJ1837{-}069^{\dagger}$ | $\mathrm{PSR}\mathrm{J}1838{-}0655$ | PWN | | $\rm HESSJ1857{+}026^{\dagger}$ | PSR J1856 + 0245 | PWN | | $\operatorname{HESS}\operatorname{J1912}{+101}$ | PSR J1913+1011 | PWN | | TeV J2032+4130 | diffuse X-ray | Pevatron/Lept. [26] | ^aReferences for the HESS sources are available at http://www.mpi-hd.mpg.de/hfm/HESS/public/HESS_catalog.htm; †These sources were initially classified as dark. and have a shorter range, whereas the latter include relic particles, i.e. those injected and accelerated at early epochs of the pulsar activity [61]. This interpretation has been further supported by the discovery of the spectral softening of the VHE nebula as a function of the distance to the pulsar, analog to that seen in X-rays [62]. The offset of the nebula with repect to the pulsar can be understood in terms of the displacement caused by an anisotropic reverse shock, itself due to the explosion of the progenitor in an inhomogenous medium. This explanation was first proposed by [63] for Vela X, another asymmetrical PWN in radio and X-rays, which is, as has been demonstrated by HESS [34], also offset in VHE γ -rays. A number of other extended offset nebulae have been discovered by HESS and the systematic search of molecular clouds in their vicinity [64] has revealed in many cases clouds at compatible kinematic distances to their associated pulsar, as candidates to explain their peculiar morphology. Another key point in the study of these middle-aged nebulae is the possibility to access both to their 'current' state through X-rays (fresh short-lived particles), and to their past history and evolution, e.g. those of the pulsar and magnetic field, through the the VHE emission (relic electrons) [64,65]. In this context the young Crab nebula appeared as a rather particular VHE source³. Very recently, two other very young nebulae were discovered by HESS: G 21.5-0.9 which harbors the second most energetic pulsar known in the Galaxy (after the Crab) and Kes 75, associated to the 325 ms X-ray only pulsar, PSR J1846-258 [39]. Despite their similar young ages to the Crab nebula, G 21.5-0.9 and Kes 75 exhibit much smaller X-ray to γ -ray luminosity ratios and hence a much lower nebular field. Also both objects are classified as composite SNRs and, as such, the possiblity of VHE radiation from particles accelerated at the forward shock of the freely expanding shells should be considered. While this possibility remains open for Kes 75, the low gas densities inferred through thermal X-ray measurements for G 21.5-0.9 make the contribution of the SNR shell to the γ -ray emission unlikely. | Source | Comments | |--------------------------------|--------------------------------------| | HESS J0632+057 | point-like, near Monoceros Loop [30] | | ${ m HESS} \ { m J}1427{-}608$ | ext., PWN compatible [31] | | ${ m HESS} \ { m J}1614{-518}$ | ext., soft [31] | | ${ m HESS} \ { m J}1626{-}490$ | ext. hard [36] | | ${ m HESS}\ { m J}1632{-}478$ | ext., IGR srce, no MOR [36] | | ${ m HESS} \ { m J}1634{-}472$ | ext., soft, SNR, no MOR [36] | | ${ m HESS} \ { m J}1708{-410}$ | ext., PWN compatible [36] | | ${ m HESS} \ { m J}1745{-303}$ | ext., MoC-SNR to the north [36,21] | | ${ m HESS~J1841-}055$ | ext. [31] | | ${ m HESS~J1858{+}020}$ | ext. [31] | | MGRO J1908+06 | HESS J1908 $+063/GRO$ srce [29,27] | | MGRO J2019+37 | ext. $> 1^{\circ}$ [27] | | MGRO J2031+41 | ext. [27] | Table 3 Class (C): Galactic sources for which no clear counterpart exists at other wavelengths: 'ext.' stands for extended, hard means a photon spectral index $\Gamma < 2.2$ and 'no MOR' is to indicate the morphological incompatibility of sources with lower-wavelength objects, if any in their line of site. $^{^{\}ddagger} This$ source splits in three sub-sources, J1800—240 A, B and C. $^{^{3}}$ this was already the case at other wavelengths ## 2.3. γ -ray binaries Although a plethora of binary systems are X-ray emitters, only three objects have been firmly detected in the VHE band up to now: PSR B1259-63/SS 2883, LS 5039 both reported by HESS and LSI+61 303, discoverd by MAGIC [43]. PSR B1259-63 is a 48 ms radio pulsar, but for LS 5039 and LSI+61 303 the precise nature of the compact object is not known: the 4 M_{\odot} upper limit on their mass is consistent both with neutron stars and low mass black holes. These two systems are much closer binary systems with periods of 3.9 and 26.5 days, respectively, as compared to the 3.4 yr period of PSR B1259-63/SS 2883. The VHE emission of LS 5039 is clearly periodic, with enhanced and harder emission at the inferior conjuction. The variability of LSI +61 303 has been recently confirmed by VERITAS [44], but it is not clear yet if the emission of is strictly periodic. The main question regarding these sources is whether the relativistic particles come from accretion powered jets or from a rotation powered pulsar wind as for PSR B1259-63/SS 2883. Although the interaction of the relativistic wind of the latter should play a major role, the precise emission mecanism is unknown (see e.g. [66]). The marginal detection of Cyg-X1, a >13 M_{\odot} blackhole system, recently reported by MAGIC [45], and if confirmed, is interesting in this context, since it should require rather an accretion powered jet model. #### 2.4. Unidentified Sources It is remarkable that most of the galactic sources are extended and many of them show a featureless morphology; this precisely renders their identification difficult, except when a clear correlation with an object at other wavelenghts exists, and/or a coherent multi-wavelength model is found. Finding the counterpart of a point-like source is, in principle, straightforward (when it exits), but the identification of the VHE emission process requires again a coherent model. Given these boundary conditions, the following classes of can be defined: A) Sources with a firmly established counterpart and for which the VHE emission origin/morphology (not necessarily the emission process) is also fairly well identified, e.g the Crab nebula, TeV shell-type SNRs and γ -ray binaries fall into this class. B) Sources with a plausible counterpart but for which further data is required to firmly establish the association, e.g. for a candidate PWN a pulsar close to the line of sight has been found but no PWN has been detected yet at other wavelengths. C) Sources with no plausible counterparts (or 'dark' sources). The majority of the galactic sources fall into the last two classes (Tables 2 and 3) and hence are still considered as unidentified. In summary there are 34 unidentified sources out of which 29 are HESS sources. TeV 2032+4130, the first unidentifed source discovered by HEGRA [24] in 2002, has been confirmed by MAGIC [25]. Recently an extended X-ray source matching the position of TeV J2032+413 was detected through deep XMM-Newton observations [26] and consequently this source is no more considered as a dark one, but is classified as B). This is the case also for five HESS sources, which were previously classified as dark: HESS J1731-347 has now an old shell-type SNR counterpart whereas a young SNR has been discovered and associated to HESS J1813-178; in addition two young and energetic pulsars have been discovered in the vicinity (line of sight) of HESS J1837-069 and HESS J1857+026, and HESS J1616-508 has now a faint X-ray counterpart. Among the three unidentified sources reported by Milagro [27], MGRO J2019+37 and MGRO J1908+06 have been recently confirmed by Tibet As- γ [28] and HESS [29], but remain still unidentifed. As noted first by [64,65], due to the large lifetime of VHE emitting electrons (up to few $1 \times \text{kyr}$ depending on the nebular field) the ratio of the X-ray luminosity to the γ -ray luminosity is a decreasing function of the system age and hence one expects TeV PWNe with so faint X-ray counterparts that they could well be below the sensitivity threshold of current X-ray instruments. Hence it is likely that some of the dark sources are indeed " γ -ray PWNe" without multiwavelength counterpart. It is also noteworthy that the extended class B) source HESS J1023-575 is in coincidence with the second most massive young cluster in the Milky Way, Westerlund 2. Strong shocks created through the colliding winds of massive stars are believed to be able to accelerate particles up to TeV energies and their collective effects can in principle provide sufficient energy for the observed emission. If so, a new class of cosmic ray accelerators should emerge through observations of other clusters if this type. # 2.5. Galactic Center and its neighbourhood The point-like emission from the direction of Sgr A complex was discovered already 4 years ago by CANGAROO [68], and subsequently detected by Whipple [67], and HESS [69] collaborations; the latter has produced the most consistent measurements of its signal and spectrum. Due to the variety of potential TeV emitting sources -including the massive black hole Sgr A*- the identification of the Galactic Center TeV emission origin is a difficult task. Two paths have been followed by HESS: simultaneous observations of X-ray flares of Sgr A* with *Chandra* and the improvement of the source (HESS J1745-290) localisation. The former approach has resulted in an upper-limit on the flaring TeV component with respect to the steady emission during the observed X-ray flare [70], while the latter has allowed to constrain the source localisation with comparable and extremely low statistical and systematic errors –better than 6". This precision is enough to exclude the SNR Sgr A East as the dominant source of the TeV emission, leaving the PWN candidate G 359.95-0.04 and Sgr A* as the most likely candidates [71]. The dark matter interpretation is also clearly disfavoured: the measured power-law spectrum seems quite incompatible with typical (quark or gluon-fragmentation type) neutralino annihilation scenarios [73]. HESS J1745-290 lies above a diffuse emission along the Galactic ridge. HESS data have shown a clear correlation with the giant molecular clouds of the central ~ 100 pc of the Galaxy [72], and a spectrum which is harder (index of 2.3) than that expected for γ -rays if they were produced through interactions of cosmic rays with the same spectrum as the one local to the solar system. One elegant explanation for this is the reduced effects of diffusion and escape due to the proximity of accelerators and targets. Another feature of the γ -ray emission is its deficit as compared to the density of molecular clouds around $l \simeq 1.5^{\circ}$. This has been interpreted in terms of a time limited diffusion range of the cosmic rays under the assumption that they were accelerated only 'recently' (some 10000 years ago) near the Galactic Center [72], but the question remains open to alternative explanations such as assuming that the γ -ray emission is a superposition of point-like sources distributed according to the disribution of Table 4 The known very high energy γ -ray emitting AGN. Only statistical errors are given on the photon index. The final column gives the reference to the discovery publication and also the reference for the photon index, where different. | Object | z | Class | Discovery | Ref. | |-------------------------------|---------|-------------------|-----------------|----------| | M 87 | 0.004 | FRI | HEGRA 2003 | [81,82] | | $\mathrm{Mrk}421$ | 0.031 | $_{ m HBL}$ | Whipple 1992 | [83,84] | | $\rm Mrk501$ | 0.034 | $_{ m HBL}$ | Whipple 1996 | [85,86] | | 1ES2344 + 514 | 0.044 | $_{ m HBL}$ | Whipple 1998 | [87,88] | | $\mathrm{Mrk}180$ | 0.046 | $_{ m HBL}$ | MAGIC 2006 | [89] | | $1ES1959{+}650$ | 0.047 | $_{ m HBL}$ | TA 2002 | [90,91] | | BL Lac | 0.069 | LBL | MAGIC 2006 | [92] | | $\mathrm{PKS}0548\text{-}322$ | 0.069 | $_{ m HBL}$ | HESS 2006 | [93] | | PKS 2005-489 | 0.071 | $_{ m HBL}$ | $\rm HESS~2005$ | [94] | | ${\rm RGB}0152{+}017$ | 0.080 | $_{ m HBL}$ | HESS 2008 | [95] | | W Comae | 0.102 | $_{\mathrm{IBL}}$ | Whipple 2008 | [97] | | PKS 2155-304 | 0.116 | $_{ m HBL}$ | Durham 1999 | [96,98] | | H1426 + 428 | 0.129 | $_{ m HBL}$ | Whipple 2002 | [99,100] | | 1ES0806 + 524 | 0.138 | $_{ m HBL}$ | Whipple 2008 | [101] | | 1ES0229+200 | 0.140 | $_{ m HBL}$ | HESS 2007 | [102] | | H2356-309 | 0.165 | $_{ m HBL}$ | HESS 2005 | [103] | | 1ES1218 + 304 | 0.182 | $_{ m HBL}$ | MAGIC 2005 | [104] | | 1ES1101-232 | 0.186 | $_{ m HBL}$ | HESS 2005 | [103] | | 1ES0347-121 | 0.188 | $_{ m HBL}$ | HESS 2007 | [105] | | $1ES1011{+}496$ | 0.212 | $_{ m HBL}$ | MAGIC 2007 | [106] | | PG 1553+113 | > 0.25 | $_{ m HBL}$ | $\rm HESS~2005$ | [107] | | 3C279 | 0.536 | FSRQ | $MAGIC\ 2007$ | [108] | | S50716+71 | unknown | $_{ m HBL}$ | MAGIC 2008 | [109] | the molecular gas. #### 3. Extragalactic Sources The first VHE emitting extragalctic source, Mkn 421, was discovered back in 1992 [83]. There has been a tremendous progress in this area since 2003 and, as of early 2008, 23 extragalctic sources are known to be VHE γ -ray emitters. All of these sources but one are blazars, i.e. belong to the class of radio-loud Active Galactic Nuclei (AGN) with one of radio jets pointing towards the observer at small angles (\sim few degrees). The borad band spectra of blazars is caracterized by two broad peaks, in mm/soft Xrays and MeV-GeV bands, respectively. The lower energy peak is understood as synchrotron emission of energetic leptons within the relativistic jet, and the generally agreed upon origin for the second component is IC scattering of either synchrotron photons (SSC)⁴ or ambiant ⁴ for Self-Synchrotron Compton photns (EC) ⁵ by the same population of leptons. Alternatively, hadronic models are put forward for the higher energy component; however the observed strong correlations between the X-ray and the γ -ray emissions favour rather leptonic models ⁶. As listed in Table 4, the High frequency peaked BL Lac objects, or HBLs, i.e. those for which the lower energy component peaks in X-rays, are the most prominent blazar TeV emitters. The three exceptions are: the BL Lac itself, classified as an LBL (Low freq. BL Lac), W Comae, an Intermediate BL Lac object, and 3C 279 a flat spectrum radio quasar, or FSRQ. M 87, the well-known nearby FRI radio-galaxy, is the first non-blazar source and its detection is of particular interest. Its two-day time variability scale, first measured by HESS [75] and recently confirmed by VERITAS [76], constrains the size of the emission region dramatically close to that of the black hole Schwarzschild radius R_s ($\sim 5\delta\,R_s$), the expected Doppler factor δ being quite small given the large declination angle of M 87 jet to the line of sight ($\sim 30^{\circ}$). Multiwavelength campains have been and are the best tools to constrain the detailed modelings of particle acceleration and emission mecanisms within relativistic jets. There have been two recent highlights in blazar observations: 1) the very fast variability of PKS 2155-304 observed by HESS during a dramatic flaring epsiod in July 2006; the best measured individual flare rise time is of 173 ± 23 seconds [77] and implies, within one-zone SSC models when using causality, a huge Doppler factor of order 100 which is in conflict with those deduced from the uni?cation models between blazars and radiogalaxies[79]; this requires the development of inhomogenous models; 2) evidence for time lag between highand low-energy band photons during 2 flares, which may be an indication of progressive acceleration of leptons within the jet [78]. Beyond the understanding of blazars themselves, measurement of their VHE spectrum and its attenuation through pair creation due to Extragalactic Background Light (EBL) can be used to constrain the EBL density itself and thereby the star formation history of the universe. The most recent result is the discovery of VHE γ -rays from 3C 279 by Magic at z = 0.536. The HESS detections of hard spectra from 1ES 1101232 (z = 0.186) and H 2356309 (z = 0.165) implied already a low level of EBL in the optical/near-infrared wavelengths [103], very close to the lower limit given by the integrated light of resolved galaxies. The detection of 3C 279 represents a major step in redshift and should put severe limits in the sub-micron to 2μ band. It is remarkable that the possibility of constraining the EBL through γ -ray measurements was predicted more than 15 years ago following the detection by Egret of the same source, 3C 279 [110]. #### 4. Summary The field of VHE γ -ray astrophysics has gone through a dramatic evolution since 2004, thanks to the high sensitivity of the new generation IACTs. The HESS GPS represents a major step in that it has revealed, beyond the large number of sources, diverse classes of γ -ray emitting galactic objects and acceleration sites: young shell-type SNRs, older SNRs interacting with molecular clouds, middleaged offset PWNe, very young PWNe and γ -ray binaries. Given the large number of still unidentified sources, other potential classes of sources could emerge, including the promising case of young and massive star clusters. The increasing number of blazar sources in the extragalactic domain allows now for population studies, and one non-blazar source, M 87 is under scrunity. Also, while the early attempts to constrain the intergalactic radiation field suffered from the very limited number of sources and a reduced range in redshift, the growing number of objects, and especially the detection of 3C 279 obtained at a low energy threshold by MAGIC, have definitely opened the way towards the cosmological application of γ -ray astrophysics. # References - [1] Weekes, T.C., et al. 1989, ApJ, 342, 379 - [2] Baade, W. & Zwicky, F. ,1934, "Cosmic Rays from Super-novae", Proc. Nat. Acad. Sci. 20(5), 259 - [3] Bailon, P. et al., 1993, Astrop. Phys. 1, 341 - [4] Hillas, A. M., et al., 1998, ApJ503, 744 - [5] H. Katagiri et al., 2005, ApJL619, L163 - [6] Muraishi, H. et al., 2000, A&A 354, L57. - [7] Aharonian, F.A., et al., 2004, Nature 432, 75. - [8] Aharonian, F.A., et al., 2005, A&A 449, 223. - [9] Aharonian, F.A., et al., 2007, A&A 464, 235. $^{^{5}}$ for External Compton ⁶ There exists however a noteworthy exception in the history of the field: a TeV flare without any counterpart in X-rays was detected during observations of 1ES 1959+650 on June 4, 2002 [74]. - [10] F. Aharonian et al., 2005, A&A437, L7 - [11] Aharonian, F.A., et al., 2007, ApJ 661, 236 - [12] S. Hoppe et al. for the HESS collab. Proc. 30th International Cosmic Ray Conference, Merida, 2007 - [13] F. Aharonian et al., 2001, A&A370, 112 - [14] J. Albert et al. 2007, ApJL 664, L87 - [15] J. Albert et al. 2007, ApJL 474, 937 - [16] Albert, J., Aliu, E., Anderhub, H., et al., 2006, ApJ, 643, L53 - [17] T. B. Humensky et al. 2007, 30th International Cosmic Ray Conference, Merida, Mexico - [18] G. Rowell et al., 2007,, ArXiv e-prints 0710.2017 - [19] F. Aharonian et al., 2006, ApJ 636, 777 A&A accepted [arXiv:0803.06829] - [20] F. Aharonian et al., 2008, arXiv:0803.0702 - [21] F. Aharonian et al., 2008, A&A 483, 509 - [22] Tian, W. W., et al., 2007, ApJ 679, L85. - [23] Kargatslev, O., 2008, arXiv:0801.2602 - [24] Aharonian, F., et al., 2002, A&A, 393, L37 - [25] Oña-wilhelmi, E. et al., 30th ICRC, Merida, Mexico, 2007 - [26] Horns, D., Hoffmann, A. I. D., Santangelo, A., Aharonian, F. A., Rowell, G. P., 2007, A&A, 469, L17 - [27] Abdo, A. A., et al., 2007, ApJ, 664, L91 - [28] Wang, Y. et al., 30th ICRC, Merida, Mexico, 2007 - [29] Djannati-ataï, A. et al., 30th ICRC, Merida, Mexico, 2007 - [30] Fiasson, A. et al., 30th ICRC, Merida, Mexico, 2007 - [31] F. Aharonian et al., 2008, A&A477, 353 - [32] F. Aharonian et al., 2005, A&A432, L25 - [33] F. Aharonian et al., 2005, A&A435, L17 - [34] F. Aharonian et al., 2006, A&A448, L43 - [35] F. Aharonian et al., 2005, Science 307, 1938 - [36] F. Aharonian et al., 2006 ApJ636, 777 - [37] F. Aharonian et al., 2006, A&A456, 245 - [38] F. Aharonian et al., 2007, A&A472, 489 - [39] Djannati-ataï, A. et al., 30th ICRC, Merida, Mexico, 2007 - [40] F. Aharonian et al., 2005, A&A442, 1 - [41] F. Aharonian et al., 2005, Science 309, 746 - [42] F. Aharonian et al., 2006, A&A460, 743 - [43] J. Albert et al., 2006, Science 312, 1771 - [44] V. A. Acciari et al., 2008, ArXiv e-prints 0802.2363 - [45] J. Albert et al., 2007, ApJL665, L51 - [46] Drury, L., 1983, Sp. Sci. Rev., 36, 57 - [47] Lagage P.O. & Cesarsky, C., 1983, J. Astron. Astrophys., 125, 249 - [48] Katz, B., Waxman, E., 2008, J. Cosm. Astrop. Phys. 1, 18 - [49] Bell A.R. & Lucek, S.G., 2001, Mon. Not. R. Astron. Soc., 321, 433 - [50] Cassam-Chenai, G., Decourchelle, A., Ballet, J., et al. 2004, A&A, 427, 199 - [51] Voelk, H. J., Berezhko, E. G., & Ksenofontov, L. T. 2005, A&A, 433, 229 - [52] Porter, T. A., Moskalenko, I. V., & Strong, A. W. 2006, ApJ, 648, L29 - [53] Ginzburg V.L. & Syrovatskii, S.I. 1964, The Origin of Cosmic Rays (New York: Macmillan) - [54] Blandford R.D., Eichler D. 1987, Phys. Rep. 154, 1 - [55] Koyama, K. et al., 1995, Nature 378, 255. - [56] Kappes, A. et al., 2007, ApJ 656, 870. - [57] Becker, J. K., 2008, Phys. Rep. 458, 173. - [58] Yamazaki, R. et al., 2006, MNRAS 371(4), 1975 - [59] Gould, R.J. 1965, Phys. Rev. Lett., 15, 577. - [60] de Jager, O. C., & Harding, A. K., ApJ 396, 161 - [61] F. A. Aharonian et al. 2005, A&A 442, L25 - [62] F. Aharonian et al. 2006, A&A 460, 365 - [63] Chevalier, R. A., Mem. Soc. Astron. Ital. 69, 977 - [64] Lemière, A. 2006, Ph.D. thesis, Univ. of Paris 7 and College de France, Paris - [65] de Jager, O. C. & Djannati-ataï, A., 2008, Springer Lecture Notes on Neutron Stars and Pulsars: 40 years after their discovery, eds. W. Becker - [66] Dubus, G., 2006, A&A, 456, 801 - [67] Kosack, K. et al., 2004, ApJ 608, L97. - [68] Tsuchiya, K. et al., 2004, ApJ 606, L115. - [69] Aharonian, F.A. et al., 2004, A&A 425, L13. - [70] Hinton, J. et al., 30th ICRC, Merida, Mexico, 2007 - [71] Van Eldik, C. et al., 30th ICRC, Merida, Mexico, 2007 - [72] F. Aharonian et al., 2007, Nature 439, 695 - [73] Aharonian, F., et al., 2006, PhRvL, 97, 221102 - [74] Gutierrez, K., et al., 2006, ApJ 644, 742 - [75] Aharonian, F., et al., 2006b, Science, 314, 1424 - [76] P. Colin et al. 2007, 30th International Cosmic Ray Conference, Merida, Mexico - [77] F. Aharonian et al. 2007, ApJL 664, L71 - [78] Albert, J., Aliu, E., Anderhub, H., et al., 2007a, ApJ, 669, 862 - [79] Sauge, L., Henri, G., 2006, ApJ 640, 185 - [80] D. Mazin and M. Raue 2007, A&A 471, 439 - [81] F. Aharonian et al. 2003, A&A 403, L1 - [82] F. Aharonian et al. 2006, Science 314, 1424 - [83] M. Punch et al. 1992, Nature 358, 477 - [84] J. A. Zweerink et al. 1997, ApJL 490, L141 - [85] J. Quinn et al. 1996, ApJL 456, L83 - [86] F. Aharonian et al. 1997, A&A 327, L5 - [87] M. Catanese et al. 1998, ApJ 501, 616 - [88] M. Schroedter et al. 2005, ApJ 634, 947 - $[89] \ J. \ Albert \ et \ al. \ 2006, \ \ ApJL \ 648, \ L105$ - [90] T. Nishiyama et al. 1999, 26th International Cosmic Ray Conference, Salt Lake City, USA 3, 370 - [91] F. Aharonian et al. 2003, A&A 406, L9 - [92] J. Albert et al 2007, ApJL 666, L17 - [93] G. Superina, et al. 2007, 30th International Cosmic Ray Conference, Merida, Mexico - [94] F. Aharonian et al. 2005, A&A 436, L17 - [95] F. Aharonian et al., 2008, A&A 481, L103 - [96] P. M. Chadwick et al. 1999, ApJ 513, 161 - [97] Swordy, S. et al., 2008, ATEL #1422 - [98] F. Aharonian et al. 2005, A&A 430, 865 - [99] D. Horan et al. 2002, ApJ 571, 753 - [100] Djannati-ataï, A., et al., 2002, A&A 391, 25 - [101] Swordy, S. et al., 2008, ATEL #1415 - [102] F. Aharonian et al. 2007, A&A 475, L9 - [103] F. Aharonian et al. 2006, Nature 440, 1018 - [104] J. Albert et al. 2006, ApJL 642, L119 - [105] F. Aharonian et al. 2007, A&A 473, L25 - [106] J. Albert et al. 2007, ApJL 667, L21 - [107] F. Aharonian et al. 2006, A&A 448, L19 - [108] M. Teshima et al. 2007, ArXiv e-prints 0709.1475, - [109] Teshima, M. et al., 2008, ATEL #1500 - [110] Stecker, F. W., de Jager, O. C. & Salomon, M. H., 1992, ApJ 390, L49