
Reconfigurable computing concept for the on-shore data acquisition

system of a km
3-scale underwater neutrino telescope

A. Belias a,∗,
aNESTOR Institute for Astroparticle Physics, National Observatory of Athens, 24001 Pylos, Greece

Abstract

The on-shore data acquisition system of a km
3-scale underwater neutrino telescope is required to acquire continuously

the digitized signals of 10000 photomultiplier tubes to apply filtering methods and search for signatures of candidate

muon and neutrino events in real time. We propose the use of reconfigurable computing architectures, to perform

the data acquisition tasks of a neutrino telescope its control system and the associated underwater observatory

instruments.

Key words: KM3NeT, DAQ, reconfigurable computing, FPGA
PACS: 95.5.Vj; 01.30.Cc; 07.05.Hd

1. Introduction

An underwater neutrino telescope, based on the
detection of Cherenkov light in water, requires many
thousand photomultiplier tubes (PMTs) in order
to cover a large sensitive effective area. The design
study for a km3-scale underwater neutrino telescope
and multidisciplinary underwater observatory in the
Mediterranean Sea [1] examines, amongst other as-
pects, different readout schemes, one of which being
to send all digitized PMT data to shore to be pro-
cessed in real-time. The required bandwidth is esti-
mated to be 0.1Tb/s.

Whereas a reasonable number of optical fibres can
accommodate this data rate, it is too excessive for
any existing data storing capacity, making the on-
line filtering of the raw data imperative. For the data
acquisition (DAQ) tasks foreseen on-shore of an un-
derwater neutrino telescope we examine the use of
reconfigurable computing, focusing on commercial-

∗ Corresponding author.
Email address: belias@nestor.org.gr (A. Belias).
URL: www.nestor.org.gr (A. Belias).

off-the-shelf Field Programmable Gate Arrays (FP-
GAs).

2. Reconfigurable computing - FPGA based

systems

Since originally proposed in the 1960s [2], recon-
figurable computing is becoming an increasingly
important computing concept. Reconfigurable com-
puting is intended to bridge the hardware software
gap, achieving potentially much higher performance
than just software, while maintaining a higher level
of flexibility than just hardware.

Reprogrammable logic chips, of which FPGAs are
considered here, permit the device hardware to be
programmed multiple times after manufacture. A
FPGA is a semiconductor device containing a col-
lection of logic blocks, memory blocks and rout-
ing interconnect, with programmable input and out-
put. With the advances of semiconductor process
technology, FPGAs have gained high logic densities
and a wide range of logical blocks and input/output
signalling. Those device architectures have evolved

Preprint submitted to Elsevier 12 September 2008

with the inclusion of features such as embedded pro-
cessors, large embedded RAMs and high-speed serial
I/O functionality, all of which exhibit an extremely
flexible, high-speed processing potential.

The fine-grained programmability of the config-
urable logic fabric permits bit-wise hardware cus-
tomization, enhancing performance for applications
specific data widths. FPGA-based systems are of
special interest since they are capable of migrating
parts of their functionality between software and
hardware implementations targeting optimal perfor-
mance and best use of resources for a specific appli-
cation.

2.1. System Features

The motivation for using FPGA-centric embed-
ded systems is driven primarily by the following fea-
tures:
– Speedup
· Hardware executes faster than software, under

the right conditions.
· FPGAs are inherently parallel through a com-

bination of spatial parallelism (i.e. multiple
identical units) and temporal parallelism (i.e.
pipelined units).

– Flexibility
· FPGAs exhibit functional flexibility like soft-

ware while retaining the execution speeds like
dedicated hardware.

· Through configurable logic, interconnects and
interfaces, one can implement custom functional
units.

· The reconfigurable hardware logic can be re-
programmed multiple times.

– Cost
· Development costs for an FPGA are less than

for application specific circuits.
· The same FPGA hardware can be re-configured

for use in a different application.

Although an FPGA clock rate is typically slower
than that of a CPU, hardware implemented digi-
tal filters can process data at many times that of
software implementations[3]. In a dedicated appli-
cation specific implementation most of the transis-
tors in a microprocessor spend nearly all of their
time idle. In contrast, FPGA architectures make it
possible to configure their transistors and periph-
eral I/O around the computing problem, and with
a large number of data paths, offer the potential in

performance improvements relative to conventional
general purpose microprocessor architectures.

FPGA Pipelines lend themselves naturally to
parallelism and a single design may include multiple
parallel pipelines, with depths of hundreds or even
thousands of cycles. This, combined with other par-
allelization schemes such as logic replication and
concurrent scheduling of independent operations,
gives FPGAs their performance potential.

An FPGA-centric implementation which leads to
reducing the number of devices in an embedded sys-
tem also reduces inter-device communication over-
heads, reducing the likelihood of data bottlenecks,
I/O power consumption, and signal integrity prob-
lems while increasing development flexibility. This
approach also makes algorithm partitioning easier
because there are fewer devices between which algo-
rithms must be split. Such features further increase
the proportion of processing capacity that is avail-
able using FPGAs.

The logic within the FPGA can be changed if or
when it is necessary, which has many advantages.
For example, hardware bug fixes and upgrades can
be administered as easily as their software counter-
parts. In order to support a new version of a network
protocol, one can redesign the internal logic of the
FPGA and send the enhancement to the affected ap-
plications. Once the new logic design is downloaded
to the system and restarted, the new version of the
protocol will be in use.

Another aspect of reconfigurable computing in-
volves manipulation of the logic within the FPGA
at run-time. This allows the design of the hardware
to change in response to the demands placed upon
the system while it is running. The FPGA acts as
an execution engine for a variety of different hard-
ware functions, some executing in parallel, others in
series, much like a CPU acts as an execution engine
for a variety of software threads.

2.2. System Architectures

A type of reconfigurable computing architecture
is one that combines FPGAs and conventional mi-
croprocessors. At its simplest it is a conventional
microprocessor-based platform (PC motherboard)
that has a FPGA-board connected to it. Although
variations on the theme do exist, the typical in-
stantiation of an FPGA in a system is in a co-
processor model with the FPGA-board connected
into the PCI, PCI-X or PCI Express buses. Boards

2

with several interconnected FPGAs are available as
components-off-the-shelf hardware. The micropro-
cessor platform provides the housekeeping functions
and run the operating system and user interface.

A typical workflow in most co-processor models
involves loading data into the FPGA with a user
initiated Direct Memory Access (DMA) operation
and loading the results back to main memory. This
architecture has the advantage that PCI buses are
ubiquitous through all general-purpose computing
platforms and provide a solid and well-known devel-
opment environment. However, because of the slave
I/O nature of the interface care must be taken to
keep the latency to the FPGA low. The I/O bus
limitations can impact the bandwidth back to main
memory and the limited PCI bandwidth can become
a bottleneck when integrating the FPGA into higher
bandwidth networks and file systems.

While FPGAs can create data paths with enor-
mous throughput, the application specific designs
typically fall short in the communication path be-
tween the FPGAs and the host processors. Recent
developments in FPGA augmented computing en-
able the direct connection of the FPGA into the
Front Side Bus (FSB) of the host microprocessor
system [4], [5].

An FPGA plugs directly into a CPU socket, of
a multi-CPU microprocessor system, allowing close
access to the host processors and system resources.

Connecting directly to the FSB provides a high
bandwidth, low latency connection between the
FPGA, host processors and system memory offering
the potential for dramatic performance improve-
ments. A simplified programming model in virtual
memory illustrates how FPGA-FSB coupling in a
microprocessor architecture provides FPGA users
with distinct performance advantages. Using vir-
tual memory, the user can map a virtual address to
access the memory of the FPGA. Without virtual
memory, the user would need to read and write
data back and forth between user and kernel space
(similar to a disk drive access).

Another added benefit of using virtual memory is
that common synchronization constructions such as
barriers and semaphores can be used to synchronize
the workings of multiple FPGA cards in the same
host.

The PCI-bus type interconnect between FPGA
modules and the host processor has made it neces-
sary to copy large chunks of data into local banks of
dynamic RAM.

This increases the complexity of the FPGA mod-

ule and decreases the number of I/O pins which
would be available to provide application specific in-
terfaces for the user.

3. FPGA-augmented Data Acquisition

The recent report [1] released by the KM3NeT
project discusses, amongst other, concepts in acqui-
sition, processing, distribution and storage of data
from a km3-scale deep-sea neutrino telescope and a
multidisciplinary underwater observatory. The neu-
trino detection method is based on Cherenkov light
and the basic detector unit is a Optical Module
(OM), employing photomultiplier tube(s) in a glass
sphere with the high voltage supply and front-end
electronics.

Owing to the large number of OMs (10000), the
singles hits of each OM (100kHz) in the sea and
the byte-size of each hit, the direct archival to stor-
age is technical unfeasible. Regardless, of the front-
end electronics implementation and any local trig-
ger schemes in the deep-sea, the DAQ system should
be able to accommodate a readout scheme where
all data arriving to shore must be processed in real-
time, including data from detector control and the
associated underwater observatory instruments.

The basic functions to be performed by the DAQ
system are outlined briefly:
– Aggregation - The continuous and dead-time-less

readout of data from each OM into buffers of pro-
cessing systems on-shore.

– Filtering - Integrity checks of the data, followed by
trigger algorithms to reduce the background rates
by factors of 104 to 105. The trigger algorithms use
pattern recognition in local and extended areas of
the detector acting on a snapshot of the data of
the whole detector.

– Event Building - For any data passing any trigger
criteria, an event will be built with all detector
data around programmable time windows of the
ensemble of OMs causing the trigger. Likewise,
with programmable spatial windows, an event will
be built, if certain detector areas for a given time
period have satisfied trigger criteria.

Features of FPGA-augmented computing that are
useful for the DAQ tasks are highlighted in the fol-
lowing:
– The bit data capabilities of FPGAs are superior

to those of microprocessors and lend themselves

3

to filtering and pattern recognition algorithms.
– Signal processing algorithms such as Fourier

transforms, convolutions and digital filtering also
lend themselves very well to FPGA use. These
algorithms are very computationally rich with
relatively little decision structures.

– The advantage of reconfigurable FPGAs is that
communications protocols and algorithm imple-
mentations can be tested in-situ without hard-
ware changes to the host architecture. This allows
adapting the resources of the reprogrammable
hardware to particular demands of the neutrino
telescope user community.

– FPGAs have been widely used in format conver-
sion in the telecommunication industry with an
extension into the media broadcast industry.

– The ’dual port’ nature of FPGA designs allows
data to ”pass through” the FPGA and enables
pre- and post-processing of data.

– FPGAs offer many channels of multi-gigabit sig-
nalling that provide direct access to the logic fab-
ric.

– Various switched network fabrics (InfiniBand,
Rocket I/O) can interface multiple FPGAs to
accommodate the high transient rates of data,
while handling the data reduction functions.

– With FPGA-augmented computing, scalability
can be achieved through increase of FPGA sys-
tems in the same number of microprocessor host
platforms.

4. Implementation on FPGAs

Unlike a microprocessor, an FPGA has no inher-
ent functionality, and requires a bitfile to instruct
the FPGA on how to interconnect its internal re-
sources. The bitfile is the result of an automated
physical synthesis process, based on a description
of the behaviour required by the FPGA. One may
either explicitly state the logical elements that are
required in terms of base logical units of the FPGA,
or they may describe the behaviour required in a
more abstract manner and have the synthesis tools
select the exact physical structure that implements
this behaviour. Many designs use a mix of both tech-
niques, which often compels developers to use a wide
variety of discrete tools. Even for experienced soft-
ware programmers, the efficient implementation of
algorithms on FPGAs presents an initial learning

curve requiring specialized understanding of digi-
tal design, however, vendor-specific tool flows have
emerged which overcome this by providing a library
of functional modules present in the FPGA and by
abstracting away the complexities of the tool chain.
Prior to deploying the code to the FPGA hardware,
simulators are used to verify the FPGA behaviour,
from simple logic up to complex system level.

5. Conclusions

The strength of reconfigurable computing stems
from the capability to customize a hardware solution
to a specific problem; yet retaining the flexibility of a
software implementation. The emergence of FPGA-
based systems within general purpose microproces-
sor platforms makes it possible to construct applica-
tion specific embedded systems with reconfigurable
components-off-the-shelf hardware and widens the
scope of applications for which FPGA processing is
viable.

The on-shore DAQ for a km3-scale Neutrino tele-
scope can draw considerable advantages from the
FPGAs flexibility and performance to create opti-
mized hardware architectures for each of the DAQ
tasks, data aggregation, filtering and event building.
Furthermore, reconfigurable computing schemes al-
low for optimal use of hardware resources and for
additional, on-demand, algorithm and implementa-
tion changes in already deployed data acquisition
hardware systems.

References

[1] KM3NeT Collaboration, KM3NeT, Conceptual Design
Report for a Very Large Volume Neutrino Telescope in
the Mediterranean Sea, April 2008.

[2] G. Estrin et al., Parallel Processing in a Restructurable
Computer System, IEEE Trans. Electronic Computers,
vol. EC-12, no.5, Dec. 1963, pp. 747-755.

[3] Tessier R., and W. Burleson, Reconfigurable Computing
for Digital Signal Processing: A Survey., Journal of VLSI
Signal Processing, 2001.28, pp. 7-27.

[4] Silicon Graphics Inc., Reconfigurable Application-Specific
Computing User’s Guide (007-4718-007), 2008.

[5] Ian McCallum, Intel QuickAssist Technology Accelerator
Abstraction Layer (AAL) 317481-001US, 2007.

4

	Introduction
	Reconfigurable computing - FPGA based systems
	System Features
	System Architectures

	FPGA-augmented Data Acquisition
	Implementation on FPGAs
	Conclusions
	References

