A Software Framework for KM3NeT

Claudio Kopper !

Erlangen Centre for Astroparticle Physics (ECAP), Univ. Erlangen-Nirnberg, Erwin-Rommel-Str. 1, 91058 Erlangen,
Germany

Abstract

Modular software frameworks have become indispensable for large-scale experiments like the KM3NeT neutrino
telescope. This article gives a generic definition of a software framework and presents an adaptation of IceTray, the
framework currently in use by the IceCube collaboration, for water-based detectors.

Key words: KM3NeT, software framework, IceTray, IceCube, analysis, software

PACS: 95.55.Vj, 29.85.-c, 29.85.Fj

1. Introduction

A major physics experiment like the KM3NeT
neutrino telescope [1] requires an immense amount
of hardware development effort. However, to make
use of the telescope, software that allows for running
the experiment and, most importantly, to transform
the raw data to high-level physics information is
needed. Such software cannot be written by a single
person and thus has to be created in a collaborative
effort.

A software developer should not need to know ev-
ery single line of code of a particular program to be
able to extend it. Most of the time, the task is to im-
plement or change a single algorithm only, without
modifying the rest of the reconstruction software.

It is thus necessary to write modular code with a
predefined data flow from the very beginning. Such
program modularisation and the definition of a cor-
responding data flow are the essential elements pro-
vided by a software framework.

Email address:
claudio.kopper@physik.uni-erlangen.de (Claudio
Kopper).

L for the KM3NeT Consortium

Preprint submitted to Elsevier

This article first gives a definition of a software
framework and illustrates why frameworks have be-
come indispensable for major physics experiments.
Finally, an adaptation of the Ice Tray [2] framework
to KM3NeT is presented. IceTray is the framework
currently in use by the IceCube collaboration [3],
who granted KM3NeT access to the IceTray code
for assessment.

2. Definition of a framework

A possible definition of a software framework is a
set of rules, interfaces and services provided to the
programmer, who can use it to perform a set of tasks.

In a modular framework, the user should only
have to change a few lines in a steering file to mod-
ify an analysis chain. This is illustrated in Fig. 1:
An existing analysis is changed by adding a further
module.

Frameworks should not be confused with class li-
braries. A class library, like a framework, provides
a set of interfaces and services. It does not, how-
ever, enforce a particular program logic and leaves
it to the individual programmer’s code to specify
the logic. In a framework, the program logic is pre-

18 August 2008



data/file muon data/file
reader track writer
A recon-
structor
event
filter
data/file event muon data/file
reader filter track writer
recon-
structor

Fig. 1. Simplified reconstruction chains consisting of modules,
with data flowing from one module to the next one. The first
chain consists of three modules. In a framework, tasks like
adding modules can easily be performed. In this example,
an event filter is inserted at a particular point in the first
chain. The resulting reconstruction chain is shown below the
dashed line.

defined, which makes it easy to extend. A program-
mer implements algorithms, whereas the framework
specifies how these algorithms interact.

Typically, frameworks enforce this overall design.
At the same time, they avoid being too restrictive,
to allow for the necessary freedom to the developers
and end-users. 2 This is achieved by using a modular
approach, where each subsystem can be modified,
added or replaced without altering the others.

Similar to a computer operating system, a frame-
work only provides a high-level interface to make life
easier for programmers and end-users. To be able to
do analysis, the physics contents have to be added
to the framework in the form of algorithms. To com-
plete the analogy, a computer is useless if it is just
installed with a bare system kernel. It can only be
used after installing applications like a web browser
or an office suite. These applications then make use
of the hardware by accessing the abstraction layer
provided by the system kernel. Of course, in princi-
ple, it is possible to use a computer without an op-
erating system by creating an application that ac-
cesses all hardware directly. But clearly, such an ap-
proach would neither be modular nor easy to use or
develop.

Using a framework saves the physicist a lot of time
in learning how to use a particular software package

2 In an object oriented language like C++, a particular de-
sign can be enforced by using the concept of encapsulation:
the inner workings of a class should always be hidden from
other classes. Another important concept, called polymor-
phism, allows the framework to be extended in a well-defined
way: only a small set of abstract classes is exposed from the
framework. These classes are then to be overwritten when
implementing an algorithm.

every time s/he wants to perform a new task on a set
of data. All algorithms are implemented in modules
having the exact same structure. This makes the
code easier to read and understand. The software
user can thus start to work on physics problems with
a significantly shorter learning period.

A modular structure also leads to more flexibility.
Systematic analyses can be performed more easily,
as the framework explicitly allows the user to change
the program flow.

Frameworks facilitate the collaboration between
different groups doing software development. As all
modules have the same format, they can be eas-
ily exchanged. This is especially advantageous when
doing cross-checks and also helps implementing an
overall quality control scheme: Code that is broken
down into small independent units can be more eas-
ily reviewed by others than a single monolithic pro-
gram.

3. IceTray

IceTray, the software framework developed and
used by the IceCube collaboration [3], provides all
the features mentioned in the previous section. De-
velopers create modules, which can be dynamically
linked into the framework. They contain the actual
algorithms responsible for event reconstruction or
simulation. Data is passed from module to module in
data containers called frames. Each frame describes
a single detector event. A frame consists of a list
of name-object tuples. Except for an I/O method,
there are no requirements imposed on the objects
stored in a frame. This design decision makes the
framework easily extendable.

The framework already provides modules for
reading in and writing out data. These modules can
be used at any time in the reconstruction chain, so
that data can be written out at any stage. Though
IceTray uses its own data format based on routines
from the boost.org libraries [4], it is possible to write
reader modules for any other data format. This has
been demonstrated by providing a reader module
for standard ANTARES ROOT-files as produced
by the current ANTARES online DAQ system [5].
It should be noted that, in principle, it is never nec-
essary to write out any intermediate data, as data
input and output is done in dedicated modules. A
full Monte Carlo simulation of events and their re-
construction can thus be done in IceTray without
ever writing temporary files to disk. Of course it



is still possible to produce intermediate data files.
Data can be written out at any point in the analysis
chain at the user’s discretion.

The order of modules can be defined when ini-
tialising the framework. This is typically done us-
ing the Python scripting language [6]. In addition
to Python, compiled C++ code can be used when
writing IceTray programs.

IceTray comes with dataclasses, containing class
definitions usable for storing positions, directions,
particle tracks, OM properties and all other data
necessary during event reconstruction and simula-
tion. These classes are usable for KM3NeT with
only a few minor modifications. These modifications
are mostly necessary because the developers of Ice-
Tray assumed that all optical modules would look
either straight downwards or upwards. This is not
necessarily true for water-based neutrino telescopes,
where OMs can face in arbitrary directions.

A few simple non-physics modules, such as a
generic event selector template and a ROOT tree
writer can also be re-used for KM3NeT. None of
these helper modules contain any physics relevant
code.

IceTray includes an installation system for almost
all external packages it depends on. These depen-
dencies, like ROOT and several other libraries, are
installed prior to compiling IceTray. The installa-
tion is done using a variant of the ports installation
system [7]. It substantially simplifies this process, as
all packages can be downloaded and compiled with
only two shell commands.

4. Adaptation of IceTray for ANTARES and
KM3NeT

To enable IceTray to work with the data that
is currently available, a considerable amount of
ANTARES code was re-written or encapsulated
into modules. Most of these modules can also be
used for KM3NeT without major changes.

In addition to the DAQ file reader module men-
tioned above, a module that permits reading the
standard ANTARES Monte Carlo file format was
developed. It enables the user to read data produced
by the standard ANTARES Monte Carlo packages
[8]. Thus, all of the currently existing Monte Carlo
data can be used with IceTray.

To be able to compare Monte Carlo events to real
data, full simulations of the Optical Module (OM),
the digitisation electronics [9] and the environmen-

tal background noise at the detector site [10] are
needed. All these aspects of the simulation chain
have been encapsulated into modules: The OM sim-
ulator uses a parameterised approach to simulate
the transit time spread and the amplitude smearing
of the photomultiplier tubes (PMTs). As there are
slightly different parameterisations in use in differ-
ent ANTARES tools, the user can choose between
different options. The simulation of the PMT sig-
nal digitization is fully compatible with the one cur-
rently in use by ANTARES. Environmental back-
ground hits (from K40 decays and bioluminescence)
are generated with a fixed user-configurable rate per
OM. Alternatively, the noise rate per OM can be
taken from a real detector run to approximate the
real noise distribution within the detector volume.

When using Monte Carlo data, it is necessary to
be able to simulate different detector trigger condi-
tions. For these purposes, the complete ANTARES
core trigger code was encapsulated into an IceTray
module. This module receives the current event data
and converts it into the format used internally by
the ANTARES trigger. The original trigger code can
thus be used unchanged, which allows for easy main-
tenance and updates in case new trigger algorithms
are added to the ANTARES DAQ. After calling the
trigger routines, the module converts all results back
to a data format compatible with IceTray and passes
all information to the next module.

Reconstruction of events is typically done using a
simple pre-fit algorithm in conjunction with a more
sophisticated reconstruction algorithm, possibly
combined with an iterative series of hit selections.
Therefore, such reconstruction strategies can be
broken down into a number of modules. This has
been done for the standard ANTARES muon re-
construction strategy [11]: All pre-fit, intermediate
fit and hit selection steps have been re-written as
IceTray modules. Track candidates are passed from
each fit module to the next one, where they can be
used as starting points. The resulting track candi-
date is then passed to a final fit algorithm which
was also converted into an IceTray module.

During the implementation of this reconstruc-
tion strategy, a module named SubTray was imple-
mented which allows for a number of modules in
a Python script to be used as a single module in
another script. With this functionality, experts can
create whole analysis or simulation tasks and encap-
sulate them into prefabricated scripts. These can
then be used as single modules by others without
them knowing every single detail. This is useful for



ANTARES OM simu- Trigger Recon-
MC file lation events struction
reader strategy > ooe
(SubTray) (SubTray) (SubTray)
L1 hit Trigger Build
construc- simulator triggered

tor hits

Fig. 2. An example module chain for ANTARES Monte Carlo
data which uses SubTrays. Most tasks are performed by
dedicated SubTray modules. For the Trigger events module,
the actual SubTray module chain is shown. In this chain, a
list of coincident hits on a floor (L1 hits) is built. These hits
are then used by the trigger module, which in turn produces
a list of triggered hits. As this list only contains one hit per
coincidence, the full list of triggered hits is built as a last step.
This illustrates that by using a SubTray, more complicated
tasks consisting of multiple modules can be combined into
single re-usable scripts.

reconstruction strategies, as users just have to add
a single module to their analysis chain instead of
every single fitting and hit selection step. There are
further applications for this module in other parts
of the framework, e.g. when combining multiple
simulation steps into a single event builder module.
Figure 2 shows an example of a module chain using
SubTray modules. It should be noted that the mod-
ule does not limit experts from taking full control
over every aspect of their simulation or reconstruc-
tion task: The module chain from a SubTray script
can always be inserted directly into the main script.

5. Summary

Software frameworks are essential parts of every
major physics experiment. KM3NeT is considering
the adoption of a framework in the current phase of
the design study [12]. If Monte Carlo studies done
now are performed in the same environment as the
real reconstruction later on, the results are compa-
rable more easily.

Another important point is the steeper learning
curve for the developer in learning how to use a
particular software. As the program structure in a
framework always stays the same, the programmer
has to learn it only once in the beginning.

Using IceTray in particular has the advantage that
this framework is already in use for neutrino tele-
scopes, is actively developed and has been thor-
oughly tested. Using the same data-format as Ice-
Cube also opens future possibilities for sharing data.

A considerable amount of work has been invested

to make IceTray compatible with ANTARES data
and to modularise the most commonly used algo-
rithms.

6. Acknowledgments

The author wishes to thank the IceCube collabo-
ration for their co-operation, especially for providing
access to the IceTray framework source code. This
work has been funded by the EU in the framework of
the KM3NeT Design Study, FP6 contract 011937.

References

[1] KM3NeT Consortium, P. Bagley et al., KM3NeT Con-
ceptual Design for a Deep-Sea Research Infrastructure
Incorporating a Very Large Volume Neutrino Telescope
in the Mediterranean Sea, 2008, available from http:
//www.km3net . org/CDR/CDR-KM3NeT . pdf

[2] IceCube Coll.,, T. DeYoung, IceTray: A Software
Framework for IceCube, International Conference on
Computing in High-Energy Physics and Nuclear
Physics (CHEP2004), 2004, available from http://www.
chep2004.org/

[3] IceCube Coll., J. Ahrens et al., Preliminary Design
Report, 2001, available from http://www.icecube.wisc.
edu/science/publications/pdd/

[4] available from http://www.boost.org/

[5] ANTARES Coll., J. A. Aguilar et al.,, The data
acquisition system for the ANTARES neutrino telescope,
Nucl. Instrum. Meth. A 570 (2007) 107 [arXiv:astro-
ph/0610029]

[6] see http://www.python.org/

[7] see http://www.macports.org/

[8] D. Bailey, Monte Carlo tools and analysis methods for
understanding the ANTARES experiment and predicting
its semsitivity to Dark Matter, PhD thesis, Wolfson
College, Oxford, 2002

[9] ANTARES Coll.,, Technical Design Report of the
ANTARES 0.1 km2 project, 2001, available from http:
//antares.in2p3.fr/Publications/

[10] ANTARES Coll.,, P. Amram et al., Background light
in potential sites for the ANTARES undersea neutrino
telescope, Astropart. Phys. 13 (2000) 127 [arXiv:astro-
ph/9910170]

[11] A. Heijboer, Track Reconstruction and Point Source
Searches with ANTARES, PhD thesis, Universiteit van
Amsterdam, 2004

[12] see http://wuw.km3net .org/



