Reconstruction of hadronic cascades in large-scale neutrino telescopes

Friedrich-Alexander-Universität Erlangen-Nürnberg

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

VLVnT '08 Toulon, 22-24.04.2008 Ralf Auer

Ralf Auer

Hadr. cascades accompany all reactions
 → understanding crucial for ALL physics

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

- Hadr. cascades accompany all reactions
 → understanding crucial for ALL physics
- additional reaction channel accessible
 - \rightarrow increasing detector efficiency/sensitivity

- Hadr. cascades accompany all reactions
 → understanding crucial for ALL physics
- additional reaction channel accessible
 → increasing detector efficiency/sensitivity

e

 W^{\pm}

em

• improving energy reco for μ -cc channel

- Hadr. cascades accompany all reactions
 → understanding crucial for ALL physics
- additional reaction channel accessible
 → increasing detector efficiency/sensitivity
- improving energy reco for μ -cc channel
- no atmospheric shower background and

- Hadr. cascades accompany all reactions
 → understanding crucial for ALL physics
- additional reaction channel accessible
 → increasing detector efficiency/sensitivity
- improving energy reco for μ -cc channel
- no atmospheric shower background and
- quite good enery resolution for showers

 \rightarrow diffuse flux detection

- Hadr. cascades accompany all reactions
 → understanding crucial for ALL physics
- additional reaction channel accessible
 → increasing detector efficiency/sensitivity
- improving energy reco for μ -cc channel
- no atmospheric shower background and
- quite good enery resolution for showers
 - \rightarrow diffuse flux detection

Showers can contribute very valuable information !

Topology Of Showers (some Aspects)

Muons

- track-like events
 big lever arm, good
 angular resolution
- "small" amplitudes
- big effective volume
- sharp 42° Photon-Cerenkov-emission

Showers

- "point-like" events "almost contained", good energy resolution
- "big" amplitudes
- effective volume ~ Can
- very big fluctuations in Cerenkov-emission

Topology Of Showers (some Aspects)

Muons

- track-like events
 big lever arm, good
 angular resolution
- "small" amplitudes
- big effective volume
- sharp 42° Photon-Cerenkov-emission
- → mostly time based reconstruction

Showers

- "point-like" events "almost contained", good energy resolution
- "big" amplitudes
- effective volume ~ Can
- very big fluctuations in Cerenkov-emission
- → time and amplitude based reco possible

Shower Reconstruction – Basics

- Very generic strategy
 - → applicable for all types & sizes of neutrino telescopes with only minor modifications
- Based on Maximum Likelihood Method (MLH)
- Amplitude information and timing information used simultaneously
 - → maximum of event information at each reco step available

MLH Modelling – Part I

Ralf Auer

MLH Modelling – Part I

$$P_{Shower}^{A} = \sqrt[\#Hits]{\prod_{i=1}^{\#Hits} p_i^A(\theta(x, y, z), \phi(x, y, z), E)} \quad \text{find } p_i^A$$

x, y, z: Vertex in karthesian coordiantes

- ϕ : Cascade Enery
- θ : Zenith angle of cascade axis
- *E* : Azimuth angle of cascade axis

p_i^A From MC Simulations

- GEANT based simulation
- Water@2.5km depth, 10²-10⁷GeV, 50k Event, 0kHz BG

p_i^A From MC Simulations

- GEANT based simulation
- Water@2.5km depth, 10²-10⁷GeV, 50k Event, 0kHz BG

p_i^A From MC Simulations

- GEANT based simulation
- Water@2.5km depth, 10²-10⁷GeV, 50k Event, 0kHz BG

Very big fluctuations in **Cerenkov emission!**

MLH Modelling – Part II

$$P_{Shower}^{A} = \sqrt[\#Hits]{\prod_{i=1}^{\#Hits} p_i^A(\theta(x, y, z), \phi(x, y, z), E)} \quad \text{find } p_i^A$$

MLH Modelling – Part II

$$P_{Shower}^{A} = \sqrt[\#Hits]{\prod_{i=1}^{\#Hits} p_{i}^{A}(\theta(x, y, z), \phi(x, y, z), E)} \quad \text{find } p_{i}^{A}}$$
$$P_{Shower}^{T} = \sqrt[\#Hits]{\prod_{i=1}^{\#Hits} p_{i}^{T}(x, y, z, t_{0}, E)} \quad \text{find } p_{i}^{T}}$$

x, y, z: Vertex in karthesian coordiantes

- *E* : Cascade Enery
- t_0 : Starttime of the event

p_i^T From MC Simulations

- GEANT based simulation
- Water@2.5km depth, 10²-10⁷GeV, 50k Event, 0kHz BG
- Electronics taken into account!

p_i^T From MC Simulations

- GEANT based simulation
- Water@2.5km depth, 10²-10⁷GeV, 50k Event, 0kHz BG
- Electronics taken into account!

p_i^T From MC Simulations

- GEANT based simulation
- Water@2.5km depth, 10²-10⁷GeV, 50k Event, 0kHz BG
- Electronics taken into account!

d = 70m (~ Att.lenght)

Ralf Auer

p_i^T Details: Effect Of RO-Electronics On E.T.A.

d = 70m (~ Att.lenght)

MLH Modelling – Part III

$$P_{Shower}^{A} = \sqrt[\#Hits]{\prod_{i=1}^{\#Hits} p_{i}^{A}(\theta(x, y, z), \phi(x, y, z), E)} \quad \text{find } p_{i}^{A}}$$
$$P_{Shower}^{T} = \sqrt[\#Hits]{\prod_{i=1}^{\#Hits} p_{i}^{T}(x, y, z, t_{0}, E)} \quad \text{find } p_{i}^{T}}$$

MLH Modelling – Part III

$$P_{Shower}^{A} = {}^{\#\text{Hits}} \sqrt{\prod_{i=1}^{\#\text{Hits}} p_{i}^{A}(\theta(x, y, z), \phi(x, y, z), E)} \quad \text{find } p_{i}^{A}$$

$$P_{Shower}^{T} = {}^{\#\text{Hits}} \sqrt{\prod_{i=1}^{\#\text{Hits}} p_{i}^{T}(x, y, z, t_{0}, E)} \quad \text{find } p_{i}^{T}$$

$$P_{Shower} = \left[P_{Shower}^{A} \cdot (P_{Shower}^{T})^{W} \right] =$$

$$= {}^{\#} \sqrt{\prod_{i=1}^{\#\text{Hits}} p_{i}^{A}(\theta(x, y, z), \phi(x, y, z), E)} \cdot \left({}^{\#} \sqrt{\prod_{i=1}^{\#\text{Hits}} p_{i}^{T}(x, y, z, t_{0}, E)} \right)^{W}$$

• One free parameter: weight W (== 1)

MLH Modelling – Part IV

• Switching to Log-Likelihood representation:

$$P_{Shower} \rightarrow P'_{Shower} = -\ln(P_{Shower}) = -\ln\left[P^{A}_{Sh} \cdot (P^{T}_{Sh})^{W}\right]$$

$$P'_{Shower} = -\frac{1}{\#\text{Hits}} \cdot \left[\sum_{i=1}^{\#\text{Hits}} \ln \left(p_i^A(\theta(x, y, z), \phi(x, y, z), E) \right) + W \cdot \sum_{i=1}^{\#\text{Hits}} \ln \left(p_i^T(x, y, z, t_0, E) \right) \right]$$

 \rightarrow 7 dimensional minimization problem!

Minimization Technique – Overview

- 7 dimensional phase space:
 - -x,y,z: depending on detector size & geo
 - $-t_o$: depending on DAQ parameters
 - $-\theta, \varphi$: usually fixed ($0..\pi, 0..2\pi$)
 - -E : go for the max!
- Very complex structure of LLH function with lots of local minima !
- A good Minimization algorithm is needed ! (Also: lot of computing power...)

Minimization Technique – Details

- Using sophisticated algorithm:
 - "Simulated Annealing":
 - combines random-walk ideas with thermodynamic processes ("cooling")
 - Defining Boltzman-Factors, etc.
 - many clever enhancements
 - ensure convergence
 - make algorithm very robust w.r.t. starting values, etc.
 - capable of "strange" boundary conditions
 - · escaping local minima

Reference Detector

Using ANTARES detector layout:

- Mediterranean sea @ 2400 m depth
- 12 Strings, ~60m horizontal spacing
- 75 Storeys per String, 14.5m vertical spacing
- 3 10" Hamamatsu PMTs per Storey, looking downwards 45° w.r.t. to horizontal
- total of 900 PMTs
- ~200m x 200m x 300m = 0.01km³ i. volume
- Simulation of ANTARES readout electronics 2ARS/PMT, 25ns integration gate, 250ns deadtime

Reference Event Sample & Constraints

- Using GEANT based event simulation:
 - isotropic (4 π) flux
 - 10GeV < E < 10 PeV Energy range
 (E⁻¹ spectrum to get more (U)HE events)
 - 120kHz Background (white noise)
 - Events generated within the Can (instumented Volume + 1 atten. lenght)
- Reco conditions:
 - only hits $\geq 3npe$ taken into account
 - "Trigger" constraints:
 - 5 Hits, 5 OMs, 3 Storeys, 3 Strings

"What-goes-ingoes-out" reco

Ralf Auer

"What-goes-ingoes-out" reco

Ralf Auer

"What-goes-ingoes-out" reco

0

0

"reconstructed-ascontained" only

Ralf Auer

"reconstructed-ascontained" only

"reconstructed-ascontained" only

0

0

Conclusions & Outlook

- Showers are worth looking at, for they really do improve all physics studies!
- Very generic reconstruction algorithm has been developed
- Preliminary results look very promising on MonteCarlo studies
- Detailed MonteCarlo studies for km³ sized detector are going on right now
- Analysis of "real" ANTARES data is about to start! *

Conclusions & Outlook

- Showers are worth looking at, for they really do improve all physics studies!
- Very generic reconstruction algorithm has been developed
- Preliminary results look very promising on MonteCarlo studies
- Detailed MonteCarlo studies for km³ sized detector are going on right now
- Analysis of "real" ANTARES data is about to start! * Thank You!

