Les étoiles à neutrons, du modèle aux observations

Luc Di Gallo

Séminaires de physique, LAPP, Vendredi 8 juin 2012

メロト メポト メヨト メヨト

- 1920 Theoretical prediction of the neutron by Rutherford
- 1931 Some discussions about a "neutron core" by Landau or Langer and Rosen
- 1932 Discovery of the neutron by Chadwick
- 1934 Theoretical prediction of neutron stars by Baade and Zwicky
- 1939 First realistic model of neutron stars, Tolman, Oppenheimer and Volkov

• 1967 First observation of a pulsar by Hewish and Bell

Figure: Chadwick, Baade and Zwicky

(日)

Neutron stars are formed after a gravitational supernova type II.

Figure: Crab nebula with a Pulsar in the center.

≣ । ह

Neutron star characteristics are:

- A radius: $R\simeq 10-15$ km
- A mass: $M\simeq 1-3\,{
 m M}_{\odot}$

• Compacity:
$$\Xi = \frac{GM}{Rc^2} \simeq 0.2$$

- Average density: $\rho\simeq 2.10^{14}\,{\rm g.cm^{-3}}$
- Temperature: $T\simeq 10^6-10^{10}\,{
 m K}$
- Period of rotation: $P \simeq 0.001 - 10 \, \mathrm{s}$
- Magnetic field: $B \simeq 10^7 10^{15} \, {
 m G}$
- \Longrightarrow Test for fundamental physics

Figure: Neutron star structure, D. Page

Radio observations X observations

Radio observations X observations

Luc Di Gallo Les étoiles à neutrons, du modèle aux observations

Radio observations X observations

Figure: Thermonuclear bursts observation at the surface of a neutron star, Guver et al. 2008

Luc Di Gallo

Les étoiles à neutrons, du modèle aux observations

Figure: Probability for Mass-Radius,

Figure: Chandra observations of Cassiopeia A Neutron Star between 2000 and 2009, Heinke et al. 2010

Figure: Temperature evolution, Heinke et al. 2010

$OBSERVATIONS \leftrightarrows MODELS$

Equation of state and Mass-radius diagram Gravitational waves Pulsar glitches and superfluidity Neutron star cooling

Nuclear matter is largely unknown

- No QCD for nuclear matter
- Phenomenological interaction

$$B(A,Z) = a_V A + a_s A^{\frac{2}{3}} + (a_I + a_{IS} A^{-\frac{1}{3}}) \frac{(N-Z)^2}{A} + a_c \frac{Z^2}{A^{\frac{1}{3}}} - \delta_p + E_D$$
(1)

- Many body problem?
- Large number of neutrons?
- Composition of nuclear matter at very high density?
- Bulk and shear viscosities for description of macroscopic dynamics?
- \rightarrow Hundreds Equation of States for nuclear matter

Equation of state and Mass-radius diagram Gravitational waves Pulsar glitches and superfluidity Neutron star cooling

Mass-Radius diagrams obtained with TOV equations are signature of Equation of States.

Luc Di Gallo Les étoiles à neutrons, du modèle aux observations

Introduction Observables Model The inner crust Excitation spectrum Neutron star cooling

Extracting equation of state informations from gravitational waves:

Figure: Isodensity contours for two merged NS after 8.276 ms, Rezzola et al. 2010

Figure: BH-NS merger waveform for to EOS, Lackey et al. 2012

3

Equation of state and Mass-radius diagram Gravitational waves Pulsar glitches and superfluidity Neutron star cooling

FSR B1800-21

Figure: Vortices in neutron stars, Grill and Pizzochero 2012

Figure: Yuan et al. 2010

 \rightarrow Glitches as a proof of superfluidity in neutron stars $\rightarrow \langle \overline{\sigma} \rangle \langle \overline{$

Thermal emission + estimated age \implies constraint on thermal evolution models

Figure: Cooling curve and observational data (Gusakov et al. 2004)

Figure: Cooling in Cassiopeia A (Page et al. 2011)

\rightarrow Accurate thermal evolution model to interpret these constraints.

10⁵

Specific heat + thermal conductivity + ν emissivity \Longrightarrow Thermal identity of the matter

- Specific heat is a sum over the different contributions from the different excitations (nuclei, phonons, electrons,...)
- The crust is important for thermal evolution models (Gnedin et al. 2001, Brown and Cumming 2009)
- Nucleonic contribution in the inner crust is strongly suppressed
- \rightarrow Investigation of a new contribution to the specific heat from the collective excitations.

Figure: Specific heat contribution as a function of the density at $T = 10^9$ K (Fortin et al. 2010)

14/30

T=10⁹ K

Equation of state and Mass-radius diagram Gravitational waves Pulsar glitches and superfluidity Neutron star cooling

MOTIVATIONS

- At low temperature collective modes are present
- Pairing energy of the order of 10¹⁰ K
 - \implies No excitations coming from pair breaking of nucleons at $T < 10^{10} \ {\rm K}$
- Due to pairing ⇒ matter is superfluid
- Superfluidity \implies Collective excitation at low energy

Figure: Collective excitations regime VS single particle excitation regime function of the temperature (Page and Reddy 2012)

 \rightarrow Hydrodynamic approximation to model collective behaviour of nucleons

Two basic equations to derive non-relativistic hydrodynamics of uncharged superfluids (Prix 2004):

- Conservation of particle number: $\partial_t n_a + \nabla$. $\mathbf{j}_a = 0$ with $\mathbf{a} = n, p$
- Euler equation: $\partial_t \mathbf{P}^a = \nabla \pi^a$ with a = n, p

$$-\pi^{\mathsf{a}} = \mu^{\mathsf{a}} - \frac{1}{2}m^{\mathsf{a}}\mathbf{v}_{\mathsf{a}}^{2} + \mathbf{v}_{\mathsf{a}} \cdot \mathbf{p}^{\mathsf{a}}$$
(2)

Characteristics of superfluids come from quantum properties:

- No viscosity
- Locally irrotational
- No entropy transport
- Entrainment between the two fluids (n,p): non dissipative interaction which misalign velocities and momenta ⇒ coupling between fluids
- \rightarrow Microscopic input from nuclear interaction

Equation of state and Mass-radius diagram Gravitational waves Pulsar glitches and superfluidity Neutron star cooling

Few hypothesis:

- Zero temperature
- β equilibrium \implies proportion of n,p
- Hydrostatic equilibrium
- Non relativistic hydrodynamics

Two linearised equations:

- Conservation of particle number: $\partial_t \, \delta n_a + n_a \nabla . \, \delta \mathbf{v}_a = 0$ with a = n, p
- Euler equation: $\partial_t \delta \mathbf{P}^a = -\nabla \delta \mu^a$ with $\mathbf{a} = \mathbf{n}, \mathbf{p}$
- \implies Two eigenvectors (U^{\pm}) with associated sound velocity (u_{\pm})
- \rightarrow Hydrodynamic modes in the inner crust

Figure: Sound velocities as a function of the density

Inner crust structures Characteristics of the model Hydrodynamic mode propagation

The inner crust structures:

Figure: Neutron star inner crust, Newton et al 2011

- Inner crust = transition from homogeneous matter to a lattice of atomic nuclei
- Inner crust = lattice of nuclei immersed in a neutron fluid
- Pasta phase = very deformed nuclei

・ロト (周) () () () () () ()

Inner crust structures Characteristics of the model Hydrodynamic mode propagation

The inner crust structures:

Figure: Pasta structures, G. Watanabe

Figure: Proton distribution in cylinder at $n_b = 0.033 \text{ fm}^{-3}$ from a numerical simulation (Watanabe et al. 2003)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

- Inner crust = transition from homogeneous matter to the lattice of atomic nuclei
- Inner crust = lattice of nuclei immersed in a neutron fluid
- Pasta phase = very deformed nuclei

Inner crust structures Characteristics of the model Hydrodynamic mode propagation

Figure: The neutron (upper) and proton (lower, shaded) distributions along the straight lines joining the centers of the nearest spherical nuclei at $n_b = 0.055 \text{ fm}^{-3}$ (Oyamatsu 1993)

Figure: Representation of "1D structure"

Description of the model:

- Model with 1D geometry
- Structures correspond to a periodic alternance of two slabs ("gaseous" and "liquid") with different proton and neutron densities
- Superfluid hydrodynamics approximation in each slab

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Figure: Representation of "1D structure"

Description of the model:

- Model with 1D geometry
- Structures correspond to a periodic alternance of two slabs ("gaseous" and "liquid") with different proton and neutron densities
- Superfluid hydrodynamics approximation in each slab

 \Longrightarrow We need 4 boundary conditions based on behaviour of matter at interfaces in order to describe transmission/reflection coefficients

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Inner crust structures Characteristics of the model Hydrodynamic mode propagation

Several compatible sets of four boundary conditions are possible. The most probable is :

- Two continuity of perpendicular fluid velocities (neutrons and protons)
- A common surface for protons and neutrons
- Continuity of the pressure

To complete the set of equations:

 \bullet Invariance along $\textbf{r}_{||} \Longrightarrow$ Snell-Descartes laws for angles

$$\left(k_{||1}^{\pm}=k_{||2}^{\pm}=k_{||3}^{\pm}=q_{||}=q\cos(heta)
ight)$$

• We use the Floquet-Bloch theorem to take into account the periodicity $U(\mathbf{r} + \mathbf{L}) = U(\mathbf{r})e^{i\mathbf{q}\cdot\mathbf{L}}$ where **L** is the periodicity

 \rightarrow The problem is formulated with a 6×6 matrix. Solutions are the zeros of the matrix determinant

Figure: Excitation spectrum at $n_{\rm B} = 0.08 \text{ fm}^{-3}$ and $\theta = 0$

A basic model of lasagne leads to:

$$\frac{L}{n_{\rm B}u_s^2} = \frac{L_1}{n_{\rm B1}u_{s1}^2} + \frac{L_2}{n_{\rm B2}u_{s2}^2} \qquad (3)$$

with

$$u_{si}^{2} = \frac{1}{m} \left. \frac{\partial P_{i}}{\partial n_{\mathsf{B}i}} \right|_{\mathsf{Y}_{pi}} \tag{4}$$

イロト 不得 とうき とうとう ほう

23/30

This model gives $u_s = 0.073 c$. \rightarrow The acoustic branch has a small enough slope to contribute significantly to the specific heat

Excitation spectrum for $\theta = 0$ Collective excitations contribution to specific heat

Figure: Excitation spectrum at $n_{\rm B} = 0.08 \text{ fm}^{-3}$ for $\theta = 0$ (left), $\theta = \pi/4$ (middle), $\theta = \pi/2$ (right)

 \rightarrow The second mode is close to the dispersion relation $\omega \simeq u'_s q_{||}$ with a slope varying from $u'_s = 0.041 c$ to $u'_s = 0.051 c$. Both acoustic mode can be associated to a Goldstone mode

Collective modes have a Bose distribution with zero chemical potential. We can integrate over all momenta in order to obtain energy density:

$$\mathcal{E}(T) = \int_{-\pi/L}^{\pi/L} \frac{dq_z}{2\pi} \int \frac{d^2 q_{||}}{(2\pi)^2} \ \hbar\omega(\mathbf{q}) \frac{1}{e^{\hbar\omega(\mathbf{q})/k_B T} - 1}$$
(5)

Temperature derivation leads to the specific heat:

$$C_{\nu}(T) = \left. \frac{\partial \mathcal{E}}{\partial T} \right|_{V} \tag{6}$$

For a linear dependence $\omega = u_s q$ of the energy:

(

$$C_{v}^{s} = \frac{2\pi^{2}k_{B}^{4}T^{3}}{15\hbar^{3}u_{s}^{3}} \equiv bT^{3}$$
(7)

For a linear dependence $\omega = u'_s q_{||}$:

$$C_{v}^{s'} = \frac{3\zeta(3)k_{B}^{3}T^{2}}{\pi\hbar^{2}u_{s}^{\prime^{2}}L} \equiv aT^{2}$$
(8)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

with $\zeta(3) = 1.202$

Excitation spectrum for $\theta = 0$ Collective excitations contribution to specific heat

Figure: Specific heat at $T = 10^9$ K as a function of the density from Fortin et al. 2010

Luc Di Gallo Les étoiles à neutrons, du modèle aux observations

・ロト ・回ト ・ヨト ・ヨト

26/30

3

Figure: Specific heat at $T = 10^9$ K as a function of the density compare with other contributions from Fortin et al. 2010

 \rightarrow Collective excitations contribute significantly to the specific heat

・ロン ・四 と ・ ヨン

э

Figure: Specific heat contribution as a function of the temperature at $n_{\rm B}=0.08~{\rm fm}^{-3}$

The electronic contribution is:

$$C_{v}^{el.} = \frac{k_{B}^{2}\mu_{e}^{2}T}{3(\hbar c)^{3}}$$
(9)

Collective excitations contribution is interpolated by

$$C_{\nu} = aT^2 + bT^3 \tag{10}$$

with $u_s = 0.079 c$ and $u'_s = 0.046 c$. \rightarrow Collective excitations contribution can dominate electrons contribution. Contribution from acoustic mode and good agreement between exact solutions and interpolation.

(日)

Conclusion

- Neutron stars are fascinating objects with lot of physics phenomenon
- It is essential to develop enough complete models to prepare future observations
- Keep in mind that theoretical considerations are not the truth since potential observations can constrain and also undermine such theories

Figure: Critical temperature for several models of pairing (Page 1997)

<ロ> (四) (四) (三) (三) (三)