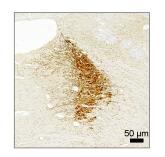
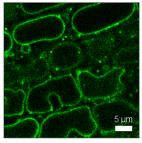
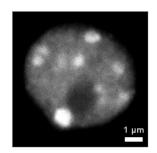
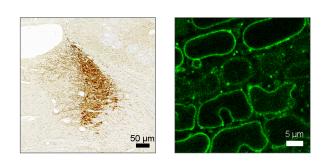
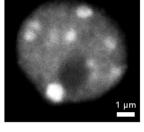
Analyse et modélisation de l'architecture fonctionnelle du noyau chez *Arabidopsis thaliana*

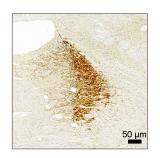

Philippe Andrey

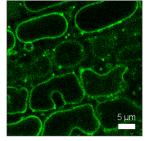

Equipe Modélisation et Imagerie Numérique Institut Jean-Pierre Bourgin UMR1318 INRA-AgroParisTech INRA Centre de Versailles-Grignon



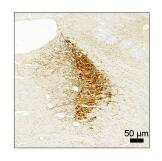


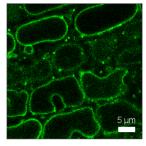


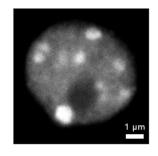




Stratégies, algorithmes et outils







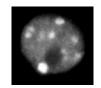
Stratégies, algorithmes et outils

Révéler et quantifier des organisations spatiales

Stratégies, algorithmes et outils

- Révéler et quantifier des organisations spatiales
- Déterminer les facteurs et les mécanismes impliqués

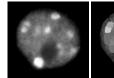
Architecture fonctionnelle du noyau chez A. thaliana


Architecture fonctionnelle

- Règles d'organisation au sein du noyau?
- Déterminants de ces organisations?
- Signification fonctionnelle?

Architecture fonctionnelle du noyau chez A. thaliana

Architecture fonctionnelle

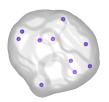

- Règles d'organisation au sein du noyau?
- Déterminants de ces organisations?
- Signification fonctionnelle?

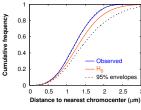
Hétérochromatine constitutive

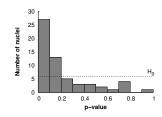
- plasticité en fonction du type cellulaire (Baroux et al., 2007)
- dynamique lors dé/re-différentiation (Tessadori et al., 2007a)
- au cours du développement (Tessadori et al., 2007b)
- en fonction de l'intensité lumineuse (Tessadori et al., 2009)
- en réponse à des stress biotiques (Pavet et al., 2006)

Traitement et analyse d'images

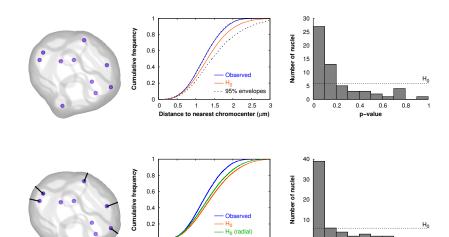
Traitement et analyse d'images







N	59	58
Volume (µm ³)	83.4 (31.0)	182.7 (62.5)
Sphericity	0.78 (0.12)	0.41 (0.08)
Elongation	1.1 (0.1)	2.6 (0.6)
Flatness	1.5 (0.4)	1.7 (0.4)
Chromocenters	8.0 (1.5)	10.9 (2.4)

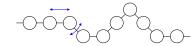

Modélisation statistique spatiale

Modélisation statistique spatiale

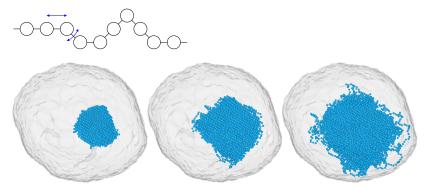
1.5

Distance to nearest chromocenter (um)

2.5

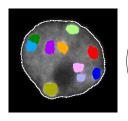

0 0.2

0.6 0.8

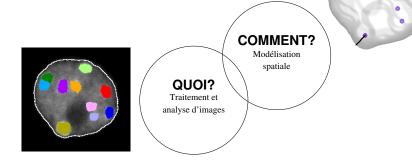

p-value

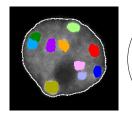
0.5

Modélisation dynamique "gros-grain"



Modélisation dynamique "gros-grain"

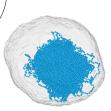

Modélisation dynamique "gros-grain"



QUOI? Traitement et

Traitement et analyse d'images

COMMENT?


Modélisation spatiale

QUOI? Traitement et

Traitement et analyse d'images

POURQUOI?

Modélisation dynamique

Remerciements

Equipe (Versailles)

E Biot J Burguet D Legland J Moukhtar S Blila

Collaborateurs

IJPB V Gaudin N Houba-Hérin L Tirichine **UPMC** T Boudier MNHN C Escudé J Ollion