# **Challenges for Emerging New Electronics Standards for Physics**

ICALEPCS 2011 Grenoble, France Oct 10-14 R.S. Larsen

SLAC National Accelerator Laboratory
For the xTCA for Physics Lab-Industry Collaboration





#### **PICMG-ese**

| Term       | Definition                                                     |
|------------|----------------------------------------------------------------|
| PICMG      | PCI Industrial Computer Manufacturers Group, 250 corporations  |
| ATCA       | Advanced Telecommunications Computing Architecture large board |
| Carrier    | ATCA or µTCA board that supports smaller standard board        |
| Shelf      | Crate, ATCA (large) or µTCA (small)                            |
| RTM/µRTM   | Rear/Micro Rear Transition Module                              |
| AMC        | Advanced Mezzanine Card mounting on ATCA Carrier, µTCA shelf   |
| Micro/µTCA | Crate designed to support AMCs directly                        |
| MCH        | Micro-Controller Hub Switch module for µTCA shelf              |
| PU, CU     | Power Unit (Module), Cooling Unit (fan or fan tray)            |
| IPMI       | Intelligent Platform Management Interface                      |
| Shelf Mgr  | Shelf board hosting IPMI controller (BMC, MMC controllers)     |
| Wide, High | High (vertical module height), Wide (front panel width)        |
| xTCA       | ACTA and /or MicroTCA standard platforms                       |



#### **Outline**

- Introduction New Standards Defined
- II. Goals & Status of New Physics Standards
- III. PICMG\* Lab-Industry Development Model
- IV. Conclusions
- V. Acknowledgments
- PCI Industrial Computer Manufacturers Group for open source standards, <u>www.picmg.com</u>





3

## I. Introduction **New Standards Defined**





#### Physics Extensions to PICMG Standards



PICMG® 3.8
Draft RC1.0 for Revision 1.0

AdvancedTCA Rear Transition Module Zone 3A

26 July 2011



Open Modular Computing Specifications



PICMG® Specification MTCA.4 R 1.0 Draft 0.9xi

MicroTCA Enhancements for Rear I/O and Precision Timing

18 July 2011



Open Modular Computing Specifications







#### PICMG3.8- Rear Transition Interface

# New Features for Physics:

- □Alignment/Keying
- □Power & System Management
- □User I/O ADF Connectors













#### MTCA.4 New Double-Wide Shelf, RTM

- PICMG double wide AMC had no RTM defined
  - Hot swappable AMCs deemed essential for next gen physics, hence added hot-swappable RTM
- Major backplane addition: Timing
  - New parallel backplane lines on one layer for triggering or interlocks; daisy chain lines for interlock chains, defined undesignated star lines for precision clocks



11-Oct-11



#### MTCA.4 AMC-RTM-Shelf Concept







# MTCA.4 12-AMC Backplane







## MTCA.4 Backplane Timing Distribution





#### MTCA.4 Prototype Shelves & Modules











12 Slot Crate Front-Rear Fan Trays (Schroff)





## MTCA.4 Compliant Shelves Operational

Fan Tray 1 MCH&SM1 Processor 1

Power Unit 1

Air Blockers

Fan Tray 2 (Hot Swap Capable)



12 Payload AMC-RTMs **Dual Star Redundant** Front View

> 6 Slot Development Unit 1-Star Non- Redundant Front View



1-Star Non-Redundant Backplane

300W Power Unit

MCH-SM

Processor

10 Ch Fast ADC-DAC





11-Oct-11 **Challenges for Emerging New Electronics Standards** for Physics

6-Slot

Rear View

# II. Goals & Status of New Physics **Standards**





#### **Goals & Status of New Standards**

- Serve expressed needs of a physics user community market segment
- 2) Achieve COTS\* support commercialization
- COTS in time for emerging opportunities in new accelerators, upgrade of obsolete large accelerator control systems
- 4) <u>Demonstrate broad applicability</u> in accelerators, physics detectors (DAQ), non-physics areas (military, telecom, industrial control, medical imaging...)





## 1.) Addressing Expressed Needs (e.g.)

#### · ILC:

ILC I&C adopted ATCA for technical, cost model

#### DESY XFEL:

- LC spinoff project approved, under construction
- Adopted xTCA as primary I&C solution in 2008 (ATCA, MTCA)
- Major contributions to standards; many I&C solutions underway

#### ITER:

Studying xTCA for fast feedback, etc. w/ IPFN (prototypes at JET)

#### SLAC:

- MOUs with DESY, ESSB & IPFN
- ATCA: Developed MPP Generic DAQ module; operating in several experiments incl. LCLS1
- MicroTCA: RF feedback, Interlocks, BPM prototypes funded, underway



# 2.) Achieving COTS Support (MTCA.4)

#### Two Types

#### A. Infrastructure:

A. Shelves (crates), Power Modules, Processors, Hub switchers (MCH), 2-wide module hardware (AMC, RTM), Timing AMC, RTM)

#### B. Generic AMCs

11-Oct-11

A. Modules that serve multiple applications through variety of RTMs (ADC-DAC, FPGA, PMC & IP Adapters etc.)





# 2.A) COTS Infrastructure Progress

| Infrastructure                                          | Description                                                                             | COTS Availability                                                     |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Development Shelf non-redundant                         | 6-payload shelf with PU, integral cooling fans                                          | 2 vendors                                                             |
| Station Node Shelf dual star redundant                  | 12-payload slot shelf , hot-<br>swappable fan tray(s)                                   | 3 vendors                                                             |
| Modular Power<br>Supplies                               | 12V Power Units (PUs)<br>300/600/900W                                                   | 2-4 vendors                                                           |
| Hub Controller (MCH)  – full featured for timing needed | MCH Controller w/ integral IPMI shelf manager, hot-swap, access to radial timing option | 2 vendors Switches for radial timing lines need development           |
| IO Controller Processor (IOC)                           | Generic AMC processor running Linux, EPICS                                              | 2+ vendors                                                            |
| Timing Module                                           | 1 or 2-wide AMC (SLAC needs EVR compatible, needs adaptation)                           | 1 <sup>st</sup> units available (U. Stockholm), need COTS sources (2) |





### 2B.) COTS Generic AMC Progress

| Generic AMC                                 | COTS Availability                                         | Lab RTM Adapters                                                                                               |
|---------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 10/2 Ch ADC/DAC<br>16 bit 125 MSPS          | 1 vendor available<br>2 <sup>nd</sup> vendor due end FY11 | <ul><li>RF-IF down-mixers</li><li>BPM adapter</li><li>Photodiodes</li></ul>                                    |
| 4 Ch ADC AMC 14-<br>16 Bit 125 -500<br>MSPS | 1-2 vendors in development                                | <ul><li>BPM single bunch</li><li>BPM multi-bunch</li><li>Beam intensity Toroid</li><li>Beam Length</li></ul>   |
| FPGA<br>Virtex/Spartan, FMC<br>optional     | 1 vendor available                                        | <ul> <li>Interlocks ADCs12 bits, 8 ch</li> <li>@60 MSps, 16ch@2KSps</li> <li>Wire scanner interface</li> </ul> |
| AMC Industry Pack<br>Adapter (2-3 IPs)      | 2 vendors in development                                  | <ul><li>Stepping motor control</li><li>Vacuum control-monitoring</li><li>Temp control-monitoring</li></ul>     |
| AMC PMC Adapters                            | 2 vendors                                                 | <ul><li>Timing Rx adapter</li><li>Frame grabber adapter</li></ul>                                              |



## 3.) In Time for Emerging Opportunities

- Developments achieved (e.g.)
  - New standards functioning in several prototyping initiatives (DESY-XFEL, SLAC-LCLS, ITER, IPFN)
  - Software, firmware standards efforts gaining traction;
     need stronger user involvement
  - LCLSII next big machine on fast track; will meet targets for demos of LLRF, RF interlocks BPMs by end 2012 (2013 construction start)
  - Beginning collaboration with ESSB/IPFN
  - Other light sources showing interest
- Lone unfinished business item is COTS Timing



## MTCA.4 Timing AMC-µRTM 1&2-Wide

- Double-wide design concept in progress DESY-Stockholm University
- Both single & double-wide MTCA.4 compliant
- Double-wide allows rear expansion to multiple receivers





11-Oct-11

## 4.) Demonstrate Broad Applicability

- A. Within Physics community:
  - ATCA instantly found use for new detector processing initiatives by SLAC, IHEP, others
  - New IO standard will help developers
  - Early MTCA single & double wide prototypes built for detectors with front panel IO,
  - MTCA.4 opens Generic AMC concept to decouple RTM designs, leverage Generic engineering costs (whether industry or lab), encourage interface standards, *interoperability*





### 4B.) Broad Applicability

- B. Outside Physics community
  - Industry members urged committee to not label standards as "physics" standards because of perceived broad applicability outside physics
  - One 12-slot shelf vendor designed MTCA.4 10
     Gbps backplane channels, higher module power to support enthusiastic *telecom* customers
- Far from being established but signs encouraging





# III. PCMG Lab-Industry Development Model

Two main features:

11-Oct-11

- 1.) Collaboration on standards development
  - Brings skilled resources from industry to quickly progress into finished product
  - Two years to complete 2 standards with entirely new concepts very fast
  - Cost engineering investment from all players all working toward favorable outcome
  - Committee amazingly knowledgeable and generous with time
  - Requires mutually support both industry & lab goals





#### III. Lab-Industry Collaboration2

- 2. Collaborating on Generic Module approach
  - Speeds time to finished applications with parallel engineering efforts
  - Reduces costs
  - Leverages designs for whole community benefit
  - Creates new standard AMC-RTM interfaces in process





#### **Generic ADC-DAC**





1.3GHz down converter

Pulse shaper for photo diodes

**BPM** interface



AMC Struck SIS8300:

ADC: 10 channel, 16 bit, 125MSPS

FPGA: XILINX Virtex5

DAC: 2 channels

Courtesy K. Rehlich, DESY



# SLAC Fast ADC RTM & Struck SIS8300 (RF System Upgrade)





11-Oct-11

# SLAC Interlock RTM & TEWS651 FPGA (Klystron Interlock Upgrade)







#### IV. Conclusions

11-Oct-11

- Collaborations critical to meeting standard's goals:
  - "Time to market" for industry, "time to project readiness" for labs; lowering development, production costs
- Continues after development complete
  - In everyone's best interests, even competitors (as in PICMG 250 company consortium)
  - Necessary to service, extend standards into future
  - Should become fixed commitment in Lab culture





### V. Acknowledgments

- Thanks to Founding Lab, Industry members DESY, FNAL,IHEP, SLAC, Cypress Point Research & TripleRing Technologies; and new member labs IPFN Lisbon, ITER, CERN, LBNL, Sincrotrone Trieste.
- Thanks to major industry contributors Schroff, Elma, Emerson, Pentair-Schroff, Positronix, Performance Technologies, Kontron, NAT, Struck, TEWS, Vadatech, GE and Instrumentation Technologies.
- The DESY XFEL team headed by Kay Rehlich and Stefan Simrock was a drving force for rapid development; thanks to all.
- Thanks to PICMG Technical Committee Leads: Hardware Technical Subcommittee RW Downing, R, Somes, V. Pavlicek; Software Technical Committee S. Simrock, A. Lowell et al.
- Finally thanks to SLAC colleagues Z. Geng, A. Young, D. Brown, C. Yee, C. Xu and M. Huffer for joining the adventure; and T. Raubenheimer, N. Phinney, C. Adolphsen, T. Himel and D. van Winkle for the continuing support.



