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Introduction



  



  

at quasi static frequencies VIRGO interferometer can be considered as  
 a conventional two coordinate strain meter,  four points tilt meter         
and                                                                                                             

  as a new type of gravity field gradiometer
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Geo-application of GW-interferometers
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Virgo intrinsic 
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Virgo control circuit signals
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Principle scheme of the VIRGO angular control system



  

recycling mirror angular noise (around the beam direction) in µrad/Hz-1/2; 
LC (red) – local control regime  ; GC (black) – global control regime.. 



  

Geo signals at the main output



  

(LIGO) data vs. prediction  for 5 days, December 7, 2006
(Neither the phase or amplitude have been normalized)

It is assumed:   ht = g||L/c2

LIGO tidal signal at FSR-frequency ~ 37 kHz

Meliessinos A., MG-12 Paris, July 12–18, 2009; http://xxx.lanl.gov/PS,cache/arxiv/pdf/1001/1001.558 v.2.pdf.
Forrest C.V., Tidal Effects on Laser Gravitational Wave Detectors, Thesis Univ. of Rorester,  LIGO Document 
P09 0000 v1 (2009).

http://xxx.lanl.gov/PS
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The effect of quasi static variations of the Earth’s gravitational field on the output signal of long baseline gravitational-wave 
interferometers has been considered. The relativistic representation of the gravitational field in the form of a varying refractive 
index is used. An analytical calculation with numerical estimates of the tidal effect has been performed to explain the recent 
results observed on the LIGO interferometers
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relativistic gravity effect !
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A.Melissinos  GR 
«red shift model»



  

If it is not GR effect, … then what ?

the only hypothesis  → it is a residual arm shift…

L ≠ const. behind the control accuracy ~∆L= 10-10 cm 

tidal  ∆LT~ 10-7 L

residual  t-deformation ~ 10-10/3·105 = 10-16

GR effect → (10-7g0L/c2 ) ⋅ F ~  5·10-18



  

       

(Frasca effect:  Sidereal periodicity in Virgo noise data)

the mean pseudo spectrum of the noise in the region 22 Hz



  Interferometer Optical Scheme (without recycling mirror)



  

     analysis logic      →       OS  – optical system configuration

   optical pump:      E(t)=Re{ E1*(t) exp jω0t} ,    ω0- carrier
 

                           E1*(t) = [A* + a*(t)] exp{ jβ sinΩmt } ,  

                      

         L ~ L1 ≠ L2   →  ∆L  ;       Ω(0) = ω0( 1 +  ξ ) ,

                                                          -  geo length variations
ξ=δl/L , ν = c/2L

 ∆ξ = ξ1 - ξ2 = ∆ξst + ∆ξgw                                               (quasi 

static variations  +  gw-signal frequencies)



  

          OS output    →      E2(t) = <E1*(t) ⊗ g*(t)> ,                 
                        
    < ⊗ >→∫ E1*(τ) g*(t-τ)dτ ;    g(t) – OS  impulse characteristic 

frequencies:            Ω(0) = ω0(1 + ξ) – central mode                    
                         
 G(0), G(±1)         Ω(0) = ω0(1 + ξ) ± 2πνFSR – side modes 

transf. functions
     G(Ωm)             Ω(0) = ω0(1 + ξ) ± Ωm  -  sidebands

           ⇓
G+(Ωm) = G(Ωm) + G(−Ωm) ;  G−(Ωm) = G(Ωm) − G(− Ωm)      
                       
                                                                      symmetric TF  

PD output    →  quadratures:   VS , VC  output signals 
       VS ∝ Re [ A G(0) + < a(t) ⊗ g(t) > ] jG+ (Ωm)
       VC ∝ Re [ A G(0) + < a(t) ⊗ g(t) > ] jG− (Ωm)



  

OS Transfer Function        ( k = 0 center , k = ±1 side modes)

G(Ω(k)) ≈1-exp j[ω0(2∆l/c)+ψ]⋅exp j[k (π/(1-r))(∆L/L)]

                                   δl ~ ⇑         ⇑ ~ ∆ξ 

ψ = ϕ1(Ω) - ϕ2(Ω) ={2π/(1-r)} (L/λ) ∆ξ ,    ∆l = <∆l>+ δl 

“dark spot”→ 4(δl/λ) + ψst/π =0, → δlopt ≈(L/2(1−r)) ∆ξst 

main point:     G(Ω) ⇒ f ( ∆ξst , δl ) → coupled values!  
      

     ψ = ψst + ψgw       ∝   (∆ξst + ∆ξgw) 



  

                              E1(t) ~ [A + a(t)] →  a(t) = 0   
                                   
                   central mode regime:     E1 ~ A

      VS(t) ≈ 0 ,         VC(t) ∝ A Re [ G*(0) j G+(Ωm)]

          VC(t) ∝ A [4(δl/λ) + (ψst + ψgw)/π] Ωm(∆l/c) ,     
                               
  ∆l = < ∆l > + δl ⇒ ∆ξst      δl = δlopt = − [L/2(1-r)] ∆ξst  

                VC(t) ∝ A ψgw Ωm (< ∆l > + δl)/c 
                                                              ⇓                                
                                                                          
 (Frasca effect ?)            hgw ~ (1+ ξ cos Ωst) sin (ωt + θ) 



  

neighbour mode regime :  a*(t) ≠ 0

VS ∝ Re[<a*(t)⊗g*(t)>j G+ (Ωm)] ;    VC ∝ {G−  (Ωm)]

   V(t) = VC + j VS ;  → {FSR filter} →  Vν(t)  → σν
2

                                 Melissinos regime FSR amplitude modulation

      σν
2 ∝ [|G(1)|2+|G(−1)|2] ⋅[|G+(Ωm )|2+|G−(Ωm )|2] 

                       δlopt ⇓ dark spot          
   [4(δl/λ) + ((ψst + ψgw)/π]2 +[ΔL/L(1−r)]2 → no linear effect!

But if    δl ≠ δlopt →   δl = δlopt+ δler  ←  a small detuning 

      σν
2 ∝ 4(δl/λ) (ψst + ψgw)/π  ;     [ m = L/(1−r) δler ]

Melissinos effect
 reconstruction ;                           change   δler – satisfies exp. data



  

Interferometer with power recycling mirror.  
                                                                                                               
                          Transfer Function  GI(ω) = GR(ω) G(ω)

                                                        ⇓                                         
           .                                         recycling cavity TF

model:           FP composed by   

    MR      -    (Michelson – FP arms cavity)

tuning parameters:  

∆l = l1 – l2 ,  →  ∆lR = lRB + li 

     «geo amplitude modulation» of         
ITF output spectral components is kept  

but more powerful and with a new tuning



  

Conclusions

• Geophysical information from GW interferometers can be readout using  
compensation signal of circuits controlling the device operation regime.

      - besides due to parametric variations of FP resonance frequencies -
• Geo - information might be received through the amplitude modulation of    

the free spectral range frequency filtered at the main interferometer output.
• Noise spectral density at the main output also is modulated by very slow  

(quasi static) variations of the interferometer base, produced by geophysics.
       
• It was demonstrated that VIRGO can be used as a two coordinate very long 

base strain meter. However the quality of the data strongly depends on a 
number of operational regime brakes during the observational time.

• Idea of measuring relative angular variations of mirror’s “plumb lines” for a 
sensing  pure “gravity perturbations” up to now was not realized and requires 
a more detailed study.

.

 



  

Radical method for the linear parametric response reconstruction would be     
 a using the two mode pump at neighbor frequencies  ω0  and  ω 1=ω0+ωfsr

11

“dark spot” condition is kept for the mode ω0 ;  

A residual part of the mode  ω 1 iteracting at 
photo diode with radio sideband ω1+ω r will 
produce directly at the Pound-Drever mixer 
output a low frequency signal I(t) proportional 
to the optical length variations ∆ξ  .
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A possibility of application this method for a registering weak global 
geodynamical effects as well as detection of very low frequency GW 
is under the process in SAI MSU



  

Thanks for attention !
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