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The possibility of using large-baseline, free-mass gravitational-wave antennas
as highly sensitive tiltmeters to study global geodynamic characteristics
is discussed.

Funding has now started for the construction of two laser free-mass gravitational-
wave antennas with baselines of several kilometers: the LIGO project' in the U.S. and
the Franco-Italian project VIRGO.? These installations were designed to detect metric
perturbations from 2#=10"2! to #=10"2* as the measurement apparatus is refined.
The reception bandwidth is to be ~10° Hz; the range of frequencies which can be
received is to be!™ from ~10 Hz to 2 kHz. Realizing these extreme characteristics in
practice will require some nontrivial technical facilities,"* so these projects are ex-
tremely expensive undertakings. They are justified by the fundamental nature of only
one ultimate goal: to master a new gravitational-wave channel for astrophysical infor-
mation.

In this letter we wish to call attention to the possibility in principle of another,
independent application of these installations: for solving problems of interest in geo-
physics, in particular, for studying the global characteristics of the earth’s core-mantle
system. Below we point out some specific geodynamic effects, explain the idea of
measuring them by means of gravitational-wave interferometers, and discuss some
instrumental and background limitations on the sensitivity.



at quasi static frequencies VIRGO interferometer can be considered as
a conventional two coordinate strain meter, four points tilt meter

as a new type of gravity field gradiometer
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In the low frequency region 10~*-107% Hz a long basc gravitational-wave interferometer is considered as a differential
tiltmeter insensitive to perturbations of the local normal to the land. The effect of variations of the reciprocal deflection
of two pendulum-mirrors is estimated for three conceivable scenarios of the earth core movements. The possibility of
measurement of this effect is discussed according 10 the noisc background estimate typical for modem gravitational antenna

projects.
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1. Introduction

In Refs. [1,2] the idea was proposed to use a grav-
itational wave interferometer on free Tnasses for ob-
servations and measurements of global geodynami-
cal processes induced by internal energy sources and
the external tidal potential as well. In this case the
gravitational wave interferometer was considered as a
differential tiltmeter in the very low frequency range

(see also Ref. [2], p. 86). The comresponding voliage
compensation, the so-called “error signal”. ¢counid be
a carrter of desired information on slow geodynam-
ical variations of the gravity force vector. The idea
looks very attractive in many aspects and first of all
for the problems of global geodynamics and astrome-
try, because movements on the earth’s core influence
the precession and nutation of the earth’s axis [5,6].

It was noted in Refs, [1,2] that the potential (in-
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Abstract

The existing high technology laser-beam detectors of gravitational waves
may find very useful applications in an unexpecied area—geophysics. To
make possible the detection of weak gravitational waves in the region of
high frequencies of astrophysical interest, ~30-10° Hz, control systems
of laser interferometers must permanently monitor, record and compensate
much larger extemal interventions that take place in the region of low
frequencies of geophysical interest, ~1073-3 x 10~2 Hz. Such phenomena
as tidal perturbations of land and gravity, normal mode oscillations of
Earth, oscillations of the inner core of Earth, etc will inevitably affect the
performance of the interferometers and, therefore, information about them
will be stored in the data of control systems. We specifically identify the
low-frequency information contained in distances between the interferometer
mirrors (deformation of Earth) and angles between the mirrors’ suspensions
{deviations of focal gravity vectors and plumb lines). We show that the access
to angular information may require some modest amendments to the optical
scheme of the interferometers, and we suggest the ways of doing that. The
detailed evaluation of environmental and instrumental noises indicates that they
will not prevent, even if only marginally, the detection of interesting geophysical
phenomena. Gravitational-wave instruments seem to be capable of reaching, as
a by-product of their continuous operation, very ambitious geophysical goals,
such as observation of the Earth’s inner core oscillations.

PACS numbers: 04.80.Nn, 07.10.Fq, 01.50.Pa
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Longhase gravitational free mass interferometer is considered for a registration
of the low frequency Earth gravity gradients. Such measurements are possible
because a variation of the Farth gravity force vector cause the corresponding mis-
alignment of the interferometer mirrors. Principal inatrumental noises which can
itmit the sensitivity of installation as the geophysical device are considered and the
instrumental sensitivity is estimated.

The idea of measuring the low frequency Earth gravity gradients (below 0.01
Hz) with the help of longhase gravitational interferometers such as VIRGO instal-
lation was discussed in [1] and different geophysical noises with simple computer
simulation were considered in {2]. In this paper we shall address the instrumental
sensitivity of the VIRGQ installation.

The optical noises in gravitational interferometer are suppressed by frequency
and power stabilization systems. The estimations of paper [1] give the photon
noise restriction for angular measurements at low frequencies at a level 5 - 10~ 14
rad/Hz'/? for moderate power 5 W, finesse 100, angular divergence of the beam
10~° rad/Hz!/2. If the pump will be increased up to the design power 300 W then
the expected value will be about 105 rad/Hz!/2,



Virgo control circuit signals



Virgo suspension control strategy
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Gorizontal detormations North arm (18101-21613),driit=0.00/nstr/min,
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Laser
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Geo signals at the main output



(LIGO) data vs. prediction for 5 days, December 7, 2006

(Neither the phase or amplitude have been normalized)
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Gravitational Modulation of the Optical Length
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The effect of quasi static variations of the Earth’s gravitational field on the output signal of long baseline gravitational-wave
interferometers has been considered. The relativistic representation of the gravitational field in the form of a varying refractive
index is used. An analytical calculation with numerical estimates of the tidal effect has been performed to explain the recent
results observed on the LIGO interferometers



Pump with a finite width of line

V, ~ 3 [10'*Hz  pump frequency

AV ~100LkHz  pedestal width

V., = c/2Ln=37.kHz FSR interval

for..L =4.km

V, =V, tV for neighbors mode



Mechanism FSR-harmonic
at the main output

L, =Ln; L =const.
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Interpretation (Continued)

Because of tidal forces the direction of the gravitational
acceleration, “g”, at the Earth’s surface deviates from
the vertical.

The horizontal component of g is along the arms and
of order g,~ 107g. The horizontal component varies

in time at the tidal frequencies, and induces a phase

shift on the carrier.

Order of magnitude estimate for h,;
Pound-Rebka effect,

by analogy to
Af iry.ermyf/f = 9 LIC?

h, = (Af/f)-B = (g, Lic?)-B ~ 4x101®
2AP/P = 1.6x10"° h, = 6.4x103



If it is not GR effect, ... then what ?

the only hypothesis - it is a residual arm shift...

L. # const. behind the control accuracy ~AL= 10-1° cm

tidal AL~ 107 L

residual t-deformation ~ 10-1%/3-10°>= 10-16

GR effect - (107g,L/c?) [F ~ 5-10*
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Interferometer Optical Scheme (without recycling mirror)



analysis logic - OS - optical system configuration
optical pump:  E(t)=Re{ E *(t) exp jo,t}, ®,- carrier

E *(t) = [A* + a*(t)] exp{ jB sinQ ¢t },

k

[ A | >

W — (2., QO)—-2nv 0= Q0) €0)+2nv o + Qp 0

L~L,#L, - AL; QO0)=ow,(1+ ¢),
- geo length variations

£=3l/L , v = ¢/2L

NE=E -E,= D8, +AF,, (quasi

static variations + gw-signal frequencies)



OS output - E,(t) = <E *(t) U g*(t)>,
<U>-[E*) g*(t-1)dt; g(t) —OS impulse characteristic
frequencies: Q(0) = ®,(1 + &) — central mode

G(0), G(x1) Q(0) = w,(1 + &) £ 2TV, — side modes
transf. functions
G(Q_) Q(0) =w,(1+¢&)£Q_ - sidebands
[]
G'(Q)=G(Q ) +G(-Q); G(Q)=G(Q)-G(-Q)

symmetric TF



OS Transfer Function ( k = 0 center , k = £1 side modes)

G(Q(k)) =1-exp jlw,(2Al/c)+Y]Exp j[k (TV(1-1))(AL/L)]
ol ~ O O~ A€

P =0,(Q)-,(Q)={21/(1-r)} (L/A\) A¢, Al=<Al>+0l

“dark spot” — 4(d/A) + Y /mt=0, — &l =(L/2(1-1)) AE,,

opt

main point:  G(Q) O f (A, 0l ) — coupled values!

st

U=y, +g,, O (A +AE,,)



E,(t) ~[A +a(t)] ~ a(t)=0
central mode regime: E, ~A
V() =0, V() A Re[ G*0)j G*(Q,)]
V() O A [4(0VN) + (@, + Y, )/ Q (Al/c),
Al=<Al>+ol 0 Ag, ol=0l  =~-[L2(1-1)]Ag,

V@ OA Y, Q, (<Al>+dl)/c
[]

(Frasca effect ?) h ~(1+ & cos Ost) sin (ot + 6)



neighbour mode regime : a*(t) # 0

V. URe[<a*(t)Ug*()>] G (Q)]; V. U{G (Q )]

V(t) =V .+jVy; — {FSRfilter} - V'(t) - O,°
Melissinos regime FSR amplitude modulation
0,7 O [IG()P+G-DP] MGH(Q, )P+IG(Q,, )]
Ol [ dark spot
[4(0/A) + (W, + P, )/T0* +[AL/L(1-1)]* — no linear effect!

Butif Ol#ol,, - ol=0l +0l, < asmalldetuning

o,° L 4un) (@, + @, ) [m=L/(1-1) 3L, ]

| Melissinos effect




Interferometer with power recycling mirror.

Transfer Function GI((L)) = GR((JL)) G(w)

[
recycling cavity TF

model: FP composed by
M; - (Michelson — FP arms cavity)

tuning parameters:
Al=1-1,, - Al,=1_+1

«geo amplitude modulation» of
ITF output spectral components is kept
but more powerful and with a new tuning



Conclusions

Geophysical information from GW interferometers can be readout using
compensation signal of circuits controlling the device operation regime.

- besides due to parametric variations of FP resonance frequencies -

Geo - information might be received through the amplitude modulation of
the free spectral range frequency filtered at the main interferometer output.

Noise spectral density at the main output also is modulated by very slow
(quasi static) variations of the interferometer base, produced by geophysics.

It was demonstrated that VIRGO can be used as a two coordinate very long
base strain meter. However the quality of the data strongly depends on a
number of operational regime brakes during the observational time.

Idea of measuring relative angular variations of mirror’s “plumb lines” for a
sensing pure “gravity perturbations” up to now was not realized and requires
a more detailed study.
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Radical method for the linear parametric response reconstruction would be

a using the two mode pump at neighbor frequencies ®, and W,=W,+w,,,

“dark spot” condition is kept for the mode ®,; * (@)

A residual part of the mode W, iteracting at
photo diode with radio sideband w,+®_will

produce directly at the Pound-Drever mixer
output a low frequency signal I(t) proportional

to the optical length variations Ag . 0 O=0t0n OO, OFo
Const L AL
I() O : @Aé’ ) +F
1-r)" @A OL

A possibility of application this method for a registering weak global
geodynamical effects as well as detection of very low frequency GW
is under the process in SAI MSU



Thanks for attention !
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