Gravitational waves search with earth based detectors

Matteo Barsuglia
Laboratoire AstroParticule et Cosmologie – CNRS
IPGP, April 17th 2012

The gravitational waves (GW)

Perturbations of the space-time metrics

General Relativity

- Propagation at the speed of light
- Tranverses, 2 polarisations at 45 degrees
- Generated by mass quadrupole acceleration
- Order of magnitude: coalescence of neutron stars of 1.4 Msun at 15 Mpc

$$h \approx \delta L/L = 10^{-21}$$

- neutron stars of 1.4 Msun at 15 Mpc $h \approx \delta L/L = 10^{-21}$ No direct detection
 Indirect detection: decrease of orbital period of the position PSR1913+16 (and other similar systems)

GW sources

- ☐ Final evolution stage of compact stars
 - ☐ Two neutron stars, two BH, BH + neutron star
 - Waveforms can be predicted

- Spinning neutron stars
 - ☐ Amplitudes unknown, depend on star asymmetry
 - □ SNR can be increased by integration
- Supernovae
 - ☐ GW from non spherical collapse
 - ☐ GW amplitudes difficult to model
 - Cosmological GW background
 - Predicted by standard inflation and by some string models

Science with the gravitational waves

- Fundamental tests of the General Relativity (polarization states, speed of the GW)
- BH-BH are a laboratory for the GR in strong field regime
- Understand Gamma ray bursts progenitor
- Information on the equation of state of neutron stars
- Study of supernovae Physics
- Cosmography: standard candles
- Physics of the early universe through a cosmological background of GW

Physics, Astrophysics and Cosmology With Gravitational Waves, Satyaprakash and Shultz Living review in Relativity

A new messenger

- GW are produced by coherent relativistic motion of large masses
- GW travel through opaque matter
- Gravity dominate the dynamics of several interesting astrophysical systems

Images:NASA

Gravitational-wave sky?

The gravitational-wave spectrum

Interferometers

- Michelson interferometer (sensing device) with mirror suspended to pendula (free masses)
- ☐ Limited by **sensing** noise and **displacement** noises
- More like an ear than an eye
 - Not directional
 - □ Only a scalar number (not an image)
 - Audio band (for interferometer on earth)

If target h $\sim 10^{-21}$ (NS/NS @Virgo Cluster)

and L $\sim 10^3$ m

Need to measure: $\Delta L \sim 10^{-18} \text{ m}$

First generation detectors

An international GW network

- ☐ Ligo Scientific Collaboration (LSC) + Virgo
- □ 5 interferometers (2 LIGO 4km, 1 LIGO 2 km, 1 GEO)

Agreement Virgo-LSC (2007)

- ☐ Full data exchange and analysis joint publication policy
- □ Science runs coordination
- Collaborative technical research

Benefits:

- Confidence in detection
- Sky coverage
- □ Duty cycle
- Sky position localization

First generation detectors: sensitivities

Best NS-NS horizon

LIGO ~ 20 Mpc Virgo ~ 10 Mpc

- Sensitivities at design level
- Excellent duty cycles (up to ~80%)
- km scale GW interferometer technology demonstrated
- □ ...but expected rates of events expected very low

Coalescing binaries: estimates for initial detectors and upper limits

Deduce rate of coalescence from:

- pulsar binary in Milky Way
- star population models

Table 5. Detection rates for compact binary coalescence sources.

IFO	Source ^a	$\dot{N}_{\rm low}~{\rm yr}^{-1}$	$\dot{N}_{\rm re}$ yr	$\dot{N}_{ m high}~{ m yr}^{-1}$	$\dot{N}_{\rm max}~{ m yr}^{-1}$
	NS-NS	2×10^{-4}	0.02	0.2	0.6
	NS-BH	2×10^{-4} 7×10^{-5} 2×10^{-4}	0.004	0.1	
Initial	вн–вн	2×10^{-4}	0.007	0.5	

- Rate upper limits from LIGO-S5/Virgo-VSR1 data
- 1-2 orders of magnitude above optimistic estimates

Search for Gravitational Waves from Compact Binary Coalescence in LIGO and Virgo Data from S5 and VSR1, PRD 82 (2010) 102001

Pulsars - upper limits

Upper limits on GW energy release by pulsar, and on pulsar ellipticity

GW upper limits beating spindown limit for two pulsars

- ◆ Crab @ ~60 Hz (LIGO data)
 - » GW energy < 2% of spin-down energy
- ◆ Vela @ ~22 Hz (Virgo data)
 - » GW energy < 35% of spin-down energy</p>
 - $> \epsilon < 1.1 \times 10^{-3}$

Other targeted searches

- 116 known millisecond and young pulsars with LIGO S5 data
 - » Best h limit 2.3×10⁻²⁶
 - » J1603-7202, 135 Hz
 - » Best ε limit 7.0×10⁻⁸
 - » J2124-3358, 406 Hz, 0.2 kpc

Stochastic background

- Stochastic background predicted by standard inflation and other models
- Correlation between detectors
- □ Upper limit below BBN using Data from LIGO
- Advanced detectors can rule out some models

An upper limit on the stochastic gravitational-wave background of cosmological origin, Nature 460 (2009) 990

Multi-messenger observations

Motivations:

- GW comes from very energetic astrophysical processes, likely sources of EM radiation or high-energy particles
- correlate in time & direction observation by GW and other messengeres

Two approaches:

- □ Other telescopes to GW (e.g. GRB alerts)
- ☐ GW to other telescopes (e.g. robotic telescopes)
- Electromagnetic follow-up
 - SWIFT (gamma, X), LOFAR (radio), ROTSE, TAROT, and others
- ☐ High-energy neutrinos
 - Exchange of triggers with Antares and IceCube

GRBs

- ☐ GRB very energetic phenomena, likely emit GW
- Progenitor scenarios for short gamma-ray bursts (short GRBs) include NS-NS or NS-BH coalescence
- \Box Search data around times of GRBs observed by γ -Xray satellite based instruments
- □ During S5/VSR1 LIGO-Virgo data takings hundreds GRB studied
- NO GW detection, derive limits on the distance

Search for gravitational-wave inspiral signals associated with short Gamma-Ray Bursts during LIGO fifth and Virgo first science run, Astrophys. J. 715, 1453 (2010)

Search for gravitational-wave inspiral signals associated with short Gamma-Ray Bursts during LIGO fifth and Virgo first science run, Astrophys. J. 715, 1438 (2010)

Future ground-based GW detectors

increase in rate ~ (increase in sensitivity) ³

Second generation detectors

- Advanced Virgo under construction
- ☐ Advanced LIGO (3 detectors 2 sites) under construction
- □ LCGT (now KAGRA) (large cryogenic gravitational-wave telescope)
 funded

■ LCGT (KAGRA) cryogenic and underground

Credit: LCGT

Advanced LIGO

- ◆ 2013 Installation completed
- ◆ 2014 ITF acceptance
- ◆ 2015 First short run (50-100 Mpc)
- ◆ 2016-17 First extended run (100-140 Mpc)
- ◆ 2018-19 Run at full sensitivity (140-200 Mpc)

Advanced Virgo

- ◆ 2009-2013 Construction
- ◆ 2011-2014 Assembly & Integration
- ◆ 2014-2015 Commissioning
- ◆ 2015 First lock
- 2016 First run

Some sources for 2nd generation detectors

Table 5. Detection rates for compact binary coalescence sources.

IFO	Source ^a	$\dot{N}_{\mathrm{low}} \mathrm{yr}^{-1}$	$\dot{N}_{\rm re}~{ m yr}^{-1}$	$\dot{N}_{\rm high}~{ m yr}^{-1}$	$\dot{N}_{\rm max}~{\rm yr}^{-1}$
	NS-NS	0.4	40	400	1000
	NS-BH	0.2	10	300	
Advanced	ВН–ВН	0.4	20	1000	

- □ NS-NS ~ 200 Mpc
- ☐ BH-BH ~ 1 Gpc

Likely detection by second generation interferometers

Spin-down limit for ~ 40 known pulsars

- Design study of a 3rd generation European interferometer (under FP7)
 - Goal: increase the sensitivity by a factor 10 with respect to 2nd generation interferometers (Advanced Virgo and Advanced LIGO)
 - Extend the detection band down to 1 Hz
- Underground triangle 10 x 3 km of tubes
- design study document released
- Next step technical design
- Science data > 2025 (if funded)

Summary

- ☐ 1st generation gravitational-wave interferometers work
 - ☐ Design sensitivity level noise understood technologies behind the first generation demonstrated
 - Several months of data
 - □ Several upper limits
- 2nd generation detectors under construction (aLIGO, AdVirgo) or funded (Kagra)
 - □ Science data takings with increasing sensitivity in the period ~ 2016-2020
 - ☐ Tens of NS-NS coalescences expected at the full sensitivity **likely first detection**
- ☐ 3rd generation european GW detector conceptual design ready