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The gravitational waves (GW)
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GW sources
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Final evolution stage of compact stars
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Two neutron stars, two BH, BH + neutron star g
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Waveforms can be predicted

Spinning neutron stars
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Q

Amplitudes unknown, depend on star asymmetry
SNR can be increased by integration

Supernovae
a

GW from non spherical collapse
Q

GW amplitudes difficult to model

Q  Cosmological GW background

O Predicted by standard inflation and by
some string models




Science with the gravitational waves

* Fundamental tests of the General Relativity (polarization
states, speed of the GW)

 BH-BH are a laboratory for the GR in strong field regime
e Understand Gamma ray bursts progenitor

* Information on the equation of state of neutron stars

e Study of supernovae Physics

e Cosmography: standard candles

» Physics of the early universe through a cosmological
background of GW

Physics, Astrophysics and Cosmology
With Gravitational Waves, Satyaprakash and Shultz

Living review in Relativity



GW are produced by
coherent relativistic motion
of large masses

GW travel through opaque
matter

Gravity dominate the

dynamics of several
interesting astrophysical
systems

A new messenger
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Interferometers

Suspended

Q Michelson interferometer (sensing mirror
device) with mirror suspended to
pendula (free masses)

O Limited by sensing noise and
displacement noises

d More like an ear than an eye
O Not directional

Light
- LASER &
Q  Only a scalar number (not an image) Detection
O Audio band (for interferometer on earth)
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Detector highlights (Virgo)
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First aeneration detectors
O Hanford |




An international GW network

O Ligo Scientific Collaboration (LSC) + Virgo Agreement Virgo-LSC

2007
Q 5 interferometers (2 LIGO 4km, 1 LIGO 2 km, 1 GEO) 2007)
O  Full data exchange and

analysis joint publication
policy

a Science runs coordination

a Collaborative technical
research
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Sky coverage
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Q

_ Sky position localization
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First generation detectors: sensitivities
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Coalescing binaries: estimates for initial detectors and
upper limits

Deduce rate of coalescence from:
. pulsar binary in Milky Way
. star population models

Table 5. Detection rates for compact binary coalescence sources.

IFO Source® Nigw yr‘J / ,Nre yr&‘ \ ngn yr‘l N nax yr‘J
.
NS_NS 2x 107 [ 002, 02 0.6
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10! mmm Our upper limit
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2x 103,51 yr1

e Rate upper limits from
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Search for Gravitational Waves from
Compact Binary Coalescence in LIGO and
Virgo Data from S5 and VSR1, PRD 8212
(2010) 102001

Credit:F.Marion



Pulsars - upper limits

Upper limits on GW energy release by pulsar, and on pulsar ellipticity

GW upper limits beating spin- Other targeted searches

down limit for two pU|SarS € 116 known millisecond and young
4 Crab @ ~60 Hz (LIGO data) pulsars with LIGO S5 data
» GW energy < 2% of spin-down energy » Best h limit 2.3x10-25

» & <1.3x10™ . » J1603-7202, 135 Hz

€ Vela @ ~22 Hz (Virgo data) » Best ¢ limit 7.0x10-8
» GW energy < 35% of spin-down energy » J2124-3358. 406 Hz. 0.2 kpc
» £ <1.1x1073 | R

Beating the spin-down limit on gravitational wave
emission from the Vela pulsar arXiv:1104.2712v3 13



Stochastic background
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Multi-messenger observations

Motivations:

O GW comes from very energetic astrophysical processes,
likely sources of EM radiation or high-energy particles

O correlate in time & direction observation by GW and other
messengeres

Two approaches:
Q  Other telescopes to GW (e.g. GRB alerts)
Q GW to other telescopes (e.g. robotic telescopes)

O  Electromagnetic follow-up

Q SWIFT (gamma, X), LOFAR (radio), ROTSE, TAROT,
and others

O High-energy neutrinos
O Exchange of triggers with Antares and IceCube
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Total Latency:
~30 min.

Time required:
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GRBs

GRB very energetic phenomena, likely emit GW

Progenitor scenarios for short gamma-ray bursts (short GRBs) include NS-NS or
NS-BH coalescence

Search data around times of GRBs observed by y-Xray satellite based instruments
During S5/VSR1 LIGO-Virgo data takings hundreds GRB studied

NO GW detection, derive limits on the distance

Search for gravitational-wave
inspiral signals associated with
short Gamma-Ray Bursts during
LIGO fifth and Virgo first science
run , Astrophys. J. 715, 1453
(2010)

Search for gravitational-wave
inspiral signals associated with
short Gamma-Ray Bursts during
LIGO fifth and Virgo first science
run, Astrophys. J. 715, 1438
(2010)
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Future ground-based GW detectors
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Q

Second generation detectors

O Advanced Virgo - under construction
O Advanced LIGO (3 detectors - 2 sites) - under construction
O LCGT (now KAGRA) (large cryogenic gravitational-wave telescope)
- funded
e Advanced LIGO
€ 2013 Installation completed
LCGT (KAGRA) cryogenic and underground @ 2014 ITF acceptance

Mozumi Are

€ 2015 First short run (50-100 Mpc)
ot € 2016-17 First extended run (100-140 Mpc)
e obts € 2018-19 Run at full sensitivity (140-200 Mpc)

Kamioka

Ikenoyama mt.

1000m
Underground

Al4itude 354m e Advanced Virgo
@ 2009-2013 Construction
€ 2011-2014 Assembly & Integration
€ 2014-2015 Commissioning
€ 2015 First lock
€ 2016 First run

18



a
a

Some sources for 2nd generation detectors

Table 5. Detection rates for compact binary cgaleStegee sources.
y
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IFO Source® Nigw yr=' f  Neeyr™! \  Vhign yr! Ninax yr~'
NS—NS 0.4 { 40 1 400 1000
NS—-BH 0.2 \ 10 | 300

Advanced BH-BH 0.4 \ 20 / 1000

NS-NS ~ 200 Mpc
BH-BH ~ 1 Gpc

line: minimum detectable amplitude with 1% fap, 10% fdp and Tubs=1yr

Likely detection by
second generation

interferometers

Spin-down limit for ~ 40 known

pulsars
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Design study of a 3rd generation European interferometer (under FP7)

O Goal: increase the sensitivity by a factor 10 with respect to 2nd
generation interferometers (Advanced Virgo and Advanced LIGO)

0 Extend the detection band down to 1 Hz
Underground - triangle - 10 x 3 km of tubes
design study document released

Next step - technical design

Science data > 2025 (if funded)




Summary

1st generation gravitational-wave interferometers work

O Design sensitivity level - noise understood - technologies behind the first generation
demonstrated

O Several months of data

O  Several upper limits

2nd generation detectors under construction (aLIGO, AdVirgo) or funded (Kagra)

O  Science data takings with increasing sensitivity in the period ~ 2016-2020

O Tens of NS-NS coalescences expected at the full sensitivity - likely first detection

3rd generation european GW detector conceptual design ready
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