Aspects of J/ψ suppression in cold nuclear matter

François Arleo

LAPTH, Annecy

Spring 2012 AFTER meeting

LPSC Grenoble – May 2012

Outline

- Motivations
 - baseline for heavy-ion collisions...yet interesting in itself!
- Nuclear absorption
 - theoretical expectations, parametric estimates
 - phenomenology and data analyses
- Nuclear parton distributions
 - phenomenology
 - uncertainties
- Energy loss effects
 - revisiting scaling properties
 - energy loss model and comparison to data

Understanding J/ψ suppression in heavy-ion collisions

Significant J/ψ suppression reported in p A collisions from fixed-target experiments to RHIC

[M. Leitch]

- \bullet Might dramatically confuse the interpretation of J/ψ suppression in heavy-ion collisions due to Debye screening in quark-gluon plasma
- Need for precise data and systematic studies

J/ψ suppression in CNM as a probe of QCD processes

Heavy-quark system in a controlled environment

Ideal playground to test QCD phenomena

Lots of physics involved!

- Heavy-quarkonium hadron interaction
- ullet Time-evolution of a $Q\overline{Q}$ dipole, dynamics of hadronization
- Parton distributions in nuclei, saturation
- Parton propagation in dense medium, energy loss processes
- Test of J/ψ production dynamics
- Intrinsic charm in the proton
- Test of QCD factorization in media
- ...

Nuclear absorption

 J/ψ weakly bound state (binding energy $\epsilon_{\rm o}\sim 0.7$ GeV) Inelastic interaction in the final state, e.g. $J/\psi+N\to D+\overline{\Lambda}_{\rm c}$

 J/ψ suppression in p A collisions (Glauber model)

$$R_{pA} = \frac{1}{A \sigma_{J/\psi N}} \int d\mathbf{b} \left(1 - e^{-T_A(\mathbf{b}) \sigma_{J/\psi N}} \right)$$
$$\simeq \exp \left(-\rho \sigma_{J/\psi N} L \right) \qquad (L \sim A^{1/3})$$

Crucial ingredient: J/ψ N inelastic cross section $\sigma_{J/\psi N}$

Theoretical approaches

Various attempts to compute $\sigma_{_{J/\psi N}}$

[from Rapp Grandchamp 2003]

In all approaches

 $\sigma_{{\scriptscriptstyle J/\psi}{\scriptscriptstyle N}} \sim$ mb \ldots but depends somehow on the c.m. energy $\sqrt{s_{{\scriptscriptstyle J/\psi}{\scriptscriptstyle N}}}$

Parametric estimates

In perturbative QCD:
$$\sigma_{_{J/\psi h}}\sim lpha_{s} \; r_{_{J/\psi}}^{2} \; \left[xG^{h}(x)\right]$$

• Bohr radius $r_{_{\!J/\psi}}\sim (lpha_s\,\,m_Q)^{-1}$ and typical $x\sim (\epsilon_0/E_{_{\!J/\psi}})$

Parametric estimates (neglecting logs)

- \bullet $\sigma_{\Upsilon N} \simeq (m_c/m_b)^2 \times \sigma_{J/\psi N} \simeq 0.1 \ \sigma_{J/\psi N}$
- ullet $\sigma_{_{J/\psi N}} \propto \left(s_{_{J/\psi N}}
 ight)^{\delta}$ with $xG(x) \sim x^{-\delta}$ $(\delta \simeq 0.25)$

Parametric estimates

In perturbative QCD:
$$\sigma_{_{J/\psi h}}\sim lpha_s \ r_{_{J/\psi}}^{2} \ \left[xG^h(x)\right]$$

• Bohr radius $r_{_{J/\psi}}\sim (lpha_s~m_Q)^{-1}$ and typical $x\sim (\epsilon_0/E_{_{J/\psi}})$

Parametric estimates (neglecting logs)

- $\sigma_{\Upsilon N} \simeq (m_c/m_b)^2 \times \sigma_{J/\psi N} \simeq 0.1 \ \sigma_{J/\psi N}$
- ullet $\sigma_{_{J/\psi N}} \propto \left(s_{_{J/\psi N}}
 ight)^{\delta}$ with $xG(x) \sim x^{-\delta}$ $(\delta \simeq 0.25)$

However

 $\sigma_{_{J/\psi N}}$ not relevant at high energy because of formation time effects

Formation time effects

Time-scales

c-quark production time: $au_p \sim m_Q^{-1} \simeq 0.1 \; {\rm fm}$

 J/ψ formation time: $au_{
m f} \sim (m_{
m 2S}-m_{
m 1S})^{-1} \sim \epsilon_{
m 0}^{-1} \simeq 0.3$ fm

Low energy: $t_f = \gamma(x_2) \tau_f \ll R$

High energy: $t_f = \gamma(x_2) \tau_f \gg R$

- Above $E_{I/\psi} \simeq 40$ GeV hadronization outside of the nucleus
- \bullet Corresponds to $\sqrt{s_{_{\rm NN}}} \simeq 25$ GeV (at $x_{_F}=0$), between SPS and FNAL
- Negligible absorption at high energy (?) as $(t_f \gg)t_h \gg R$

Formation time effects

[E866/NuSea Leitch et al. 99]

- E866/NuSea measurements consistent with formation time effects
 - low $x_{\rm F}$: $R^{\psi'} < R^{J/\psi}$ • large $x_{\rm F}$: $R^{\psi'} \simeq R^{J/\psi}$
- \bullet Need ψ' data at higher energies (RHIC/LHC)

Energy dependence from data

[Lourenço Vogt Wöhri 08]

 \bullet Slight decrease of $\sigma_{{\ensuremath{J/\psi N}}}$ vs. $\sqrt{\ensuremath{s_{\mathrm{NN}}}}$

What about $\sigma_{J/\psi N}$ vs. $\sqrt{s_{J/\psi N}}$?

Energy dependence from data

[Lourenço Vogt Wöhri 08]

- No energy dependence observed
- Apparent tension among data sets
 - shortcoming of the theoretical approach or experimental issue?
- Delicate extrapolation at higher energies

nuclear PDF

At mid-rapidity: $gg \rightarrow c\bar{c} X$

$$R^{J/\psi} \sim \frac{G^A(x_2, m_{J/\psi})}{G^P(x_2, m_{J/\psi})} \neq 1$$

- $x_2 \ll 10^{-1}$: shadowing
- $x_2 \sim 10^{-1}$: antishadowing

[Eskola Paukkunen Salgado 09]

- Significant effects
 - Might be dominant suppression mechanism at high energy (and y = 0)
 - spoils the extraction of $\sigma_{{\scriptscriptstyle J/\psi N}}$ from data
 - scaling with x_2 (like nuclear absorption)
- Very large uncertainties
 - lack of small x data in e A and p A collisions
 - saturation at very small x_2 $(m_{J/\psi} \sim Q_{\rm s}(x_2))$ [Gelis Fujii Venugopalan 06]

From SPS to RHIC & LHC

 $\sqrt{s_{NN}}$ [GeV] [Lourenço Vogt Wöhri 08]

Expected suppression at mid-rapidity

- ullet SPS to FNAL : $10-20\%\ J/\psi$ enhancement
- RHIC : $10 30\% J/\psi$ suppression (?)
- LHC : 30 70% J/ψ suppression (??)
- AFTER would study the transition region

Major difficulty

Disentangle nuclear absorption from nPDF effects

• $\sigma_{{\it J/\psi N}}$ can't be determined with precision better than a factor 2

1	Proton	nDS	nDSg	EKS98	EPS08	HKM
$\sigma_{J/\psi { m N}}^{ m nPDF}$ (mb)	3.4 ± 0.2	3.5 ± 0.2	4.0 ± 0.2	5.2 ± 0.2	6.0 ± 0.2	3.6 ± 0.2
χ^2/ndf	1.4	1.4	1.5	1.5	1.7	1.4

[FA Tram 06]

Major difficulty

Disentangle nuclear absorption from nPDF effects

- $\sigma_{{\scriptscriptstyle J/\psi}{\scriptscriptstyle N}}$ can't be determined with precision better than a factor 2
- \bullet Possible energy dependence of $\sigma_{{\it J/\psi N}}(\sqrt{s_{{\it J/\psi N}}})$ for specific nPDF sets

[Lourenço Vogt Wöhri 08]

• Energy dependence visible if strong nPDF effects

Major difficulty

Disentangle nuclear absorption from nPDF effects

- $\sigma_{_{J/\psi N}}$ can't be determined with precision better than a factor 2
- \bullet Possible energy dependence of $\sigma_{{\it J/\psi N}}(\sqrt{s_{{\it J/\psi N}}})$ for specific nPDF sets
- Possible dependence on the partonic process

[Ferreiro Fleuret Lansberg Rakotozafindrabe 08]

Major difficulty

Disentangle nuclear absorption from nPDF effects

- ullet $\sigma_{_{J/\psi N}}$ can't be determined with precision better than a factor 2
- \bullet Possible energy dependence of $\sigma_{_{J/\psi N}}(\sqrt{s_{_{J/\psi N}}})$ for specific nPDF sets
- Possible dependence on the partonic process

[Ferreiro Fleuret Lansberg Rakotozafindrabe 08]

Various possibilities

- compare (1s), (2s) and (1p) states
- compare charmonia and bottomonia
- compare hidden and open heavy flavor production

Intrinsic charm

 J/ψ production from the charm Fock component of the proton

[Brodsky Hoyer 89]

$$|p\rangle = |uud\rangle + |uudg\rangle + \cdots + |uudc\bar{c}\rangle + \cdots$$

Qualitative features

 cc̄ freed from the hadronic interaction on the front surface of the target

$$\alpha \simeq 2/3$$

- More important at large x_{F}
- x_F scaling (as seen in data)
- Crucially depends on the amount of charm in the proton
- Also affects open heavy flavor production

Intrinsic charm phenomenology

[Vogt 99]

- Might affect J/ψ nuclear production at FNAL say above $x_{_F} \simeq 0.25$
- Larger effects at lower center-of-mass energy
- Unable to reproduce (alone) E866/NuSea data given the current constraints on charm in the proton ($\lesssim 1\%)$

Intrinsic charm phenomenology

[Kopeliovich Potashnikova Schmidt 10]

- Nuclei transparent to IC components in the projectile
 - relative "enhancement" of open and hidden heavy-flavor production
- Consistent with SELEX data on open charm production
- Slight effect on J/ψ suppression at large x_F

Energy loss

Picture

The incoming parton loses energy due to multiple scattering in the nuclear target, shifting its momentum fraction by an amount $\Delta x_1 = \epsilon/E_p$

Consequence on J/ψ supression

$$R_{pA}(x_1) \simeq \int d\epsilon \, \mathcal{P}(\epsilon) \times f_i(x_1 + \Delta x_1(\epsilon))/f_i(x_1)$$

• $\mathcal{P}(\epsilon)$: probability distribution

- Baier Dokshitzer Mueller Schiff 01
- Significant suppression from the steep PDF especially at large x_1
- No suppression expected as long as $\Delta x_1 \ll x_1$

Energy loss phenomenology

Gavin-Milana model

[Gavin Milana 92]

- $\langle \epsilon \rangle \propto E_i \to \Delta x_1 \propto x_1 : x_1 \text{ scaling of } J/\psi \text{ suppression}$
- Should also affect Drell-Yan nuclear dependence
- Energy loss processes also in the final state

Energy loss phenomenology

Gavin-Milana model

[Gavin Milana 92]

- $\langle \epsilon \rangle \propto E_i \to \Delta x_1 \propto x_1 : x_1 \text{ scaling of } J/\psi \text{ suppression}$
- Should also affect Drell-Yan nuclear dependence
- Energy loss processes also in the final state

Caveats

- ullet Ad hoc assumption regarding E, L, and M dependence of parton energy loss
- Failure to describe ↑ suppression
- $\Delta E \propto E$ claimed to be incorrect in the high energy limit due to uncertainty principle so-called Brodsky-Hoyer bound

Energy loss phenomenology

Induced gluon radiation needs to resolve the medium

[Brodsky Hoyer 93]

$$t_f \sim \frac{\omega}{k_\perp^2} \lesssim L \qquad \omega \lesssim k_\perp^2 \ L \sim \hat{q} \ L^2$$

- Bound independent of the parton energy
- Energy loss cannot be arbitrarily large in a finite medium
- Apparently rules out energy loss models as a possible explanation

However, not true in general in QCD

[FA Peigné Sami 10]

Revisiting energy loss scaling properties

Two cases whether gluon radiation is coherent or incoherent

(i) Incoherent radiation in the initial/final state Radiation of gluons with large formation times cancels out in the induced gluon spectrum, leading to $t_f \sim L$

$$\Delta E \propto \hat{q} L^2$$

- Hadron production in nuclear DIS and Drell-Yan in p A collisions
- Jets and hadrons produced in hadronic collisions at large angle (e.g. jet quenching in heavy-ion collisions)

Revisiting energy loss scaling properties

Two cases whether gluon radiation is coherent or incoherent

(ii) Coherent radiation (interference) in the initial/final state Induced gluon spectrum dominated by large formation times

$$\Delta E \propto \frac{\sqrt{\hat{q}L}}{M} E$$

- Production of light and open heavy-flavour hadrons at forward rapidities in the medium rest frame (nuclear matter or QGP)
- ullet Production of heavy-quarkonium if color neutralisation occurs on long time-scales $t_{
 m octet}\gg t_{
 m hard}$

Medium-induced gluon spectrum

Gluon spectrum $dI/d\omega\sim$ Bethe-Heitler spectrum of massive (color) charge

$$\Delta E = \int d\omega \, \omega \, \left. \frac{dI}{d\omega} \right|_{\text{ind}} = N_c \alpha_s \frac{\sqrt{\hat{q}L} - \Lambda_{\text{\tiny QCD}}}{M_{\perp}} \, E$$

- $\Delta E \propto E$ neither initial nor final state effect nor 'parton' energy loss: arises from coherent radiation
- Physical origin: broad t_f interval : $L, t_{hard} \ll t_f \ll t_{octet}$ for medium-induced radiation

Model for heavy-quarkonium suppression

[FA Peigné 1204.4609]

$$\frac{d\sigma_{pA}^{\psi}}{dx_{F}}\left(x_{F},\sqrt{s}\right) = \int_{0}^{\epsilon_{\text{max}}} d\epsilon \, \mathcal{P}(\epsilon) \, \frac{d\sigma_{pp}^{\psi}}{dx_{F}} \left(x_{F} + \delta x_{F}(\epsilon)\right)$$

pp cross section fitted from experimental data

$$rac{d\sigma_{pp}^{\psi}}{dx_{\scriptscriptstyle F}} \propto (1-x')^n/x' \qquad x' \equiv \sqrt{x_{\scriptscriptstyle F}^2 + 4M_{\scriptscriptstyle \perp}^2/s}$$

- Shift given by $\delta x_F(\epsilon) \simeq \epsilon/E_{\text{beam}}$
- $\mathcal{P}(\epsilon)$: quenching weight, scaling function of $\hat{\omega} = \sqrt{\hat{q}L}/M_{\perp} \times E$
- Length L given by $L = 3/2 r_0 A^{1/3}$
- \hat{q}_0 only free parameter of the model

Procedure

- lacktriangle Fit $\hat{m{q}}_{_0}$ from J/ψ suppression E866 data in p W collisions
- ② Predict J/ψ and Υ suppression for all nuclei and c.m. energies

- $\hat{q}_0 = 0.09 \text{ GeV}^2/\text{fm}$
- ullet Fe/Be ratio well described, supporting the L dependence of the model

Procedure

- lacktriangle Fit $\hat{m{q}}_{_0}$ from J/ψ suppression E866 data in p W collisions
- ② Predict J/ψ and Υ suppression for all nuclei and c.m. energies

- $\hat{q}_0 = 0.09 \text{ GeV}^2/\text{fm}$
- ullet Fe/Be ratio well described, supporting the L dependence of the model

Let's investigate J/ψ suppression at other energies

Extrapolating to other energies

Two competing mechanisms might alter heavy-quarkonium suppression

Nuclear absorption if hadron formation occurs inside the medium

$$t_{\mathsf{form}} = \gamma \ \tau_{\mathsf{form}} \lesssim L$$

- low \sqrt{s} and/or negative x_F
- nPDF/saturation effects

$$Q_s^2(x_2) \sim \hat{q}L \sim m_c^2$$

• high \sqrt{s} and/or positive x_F

SPS predictions

- Agreement when $x_F > x_F^{\min}$
- \bullet Room for J/ψ absorption, though weaker than previously thought

RHIC predictions

- Energy loss model fails in the most backward bins
- Saturation effects improve the agreement
- Smaller experimental uncertainties would help

LHC predictions

- ullet Moderate effects (\sim 10–15%) around mid-rapidity
- Large effects above $y \gtrsim 2-3$
- Saturation might be the dominant effect at the LHC
- ullet Slightly smaller suppression expected in the Υ channel

Conclusion

Many processes at work!

- Nuclear absorption
 - formation time dynamics at not too high energy
 - possibly small at LHC
- nPDF effects
 - probably the dominant source of J/ψ suppression at LHC at y=0
 - lots of uncertainties
- Energy loss
 - recently revisited
 - might solve the puzzle of J/ψ suppression at large $x_{\!\scriptscriptstyle F}$
 - picture breaks down when nuclear absorption plays a role

The challenge: disentangle those effects at a quantitative level

Why AFTER could play an interesting role

- Kinematics
 - $\sqrt{s} = 72-115$ GeV: Interesting "crossroad" between the various effects
 - Wide x_F range covered, covering both negative and positive regions
- Various nuclear targets
 - Testing L dependence, a priori different for each mechanism
- Various states: J/ψ , ψ' , χ_c
 - Testing dynamics of color neutralization (energy loss) and hadronization (absorption)

Saturation

 J/ψ production in p A collisions depends on the nuclear gluon distribution

$$G^A(x,Q^2) \neq A G^p(x,Q^2)$$

especially at small $x \ll 1$ due to saturation/shadowing

Heavy-quarkonium including saturation

$$R_{\scriptscriptstyle {
m pA}} = R_{\scriptscriptstyle {
m pA}}^{\sf E.loss}(\hat{q}) imes R_{\scriptscriptstyle {
m pA}}^{\sf sat}(Q_s^2)$$

R_{pA}^{sat} parametrized as

[Fujii Gelis Venugopalan 2006]

$$R_{\rm pA}^{\rm sat} = \left(\frac{2.65}{2.65 + Q_s^2 \; [{\rm GeV}^2]}\right)^{0.417}$$

• Saturation scale directly related to \hat{q} through

Mueller 1999

$$Q_s^2(x) = 2R \hat{q}(x)$$

Saturation

 J/ψ production in p A collisions depends on the nuclear gluon distribution

$$G^A(x,Q^2) \neq A G^p(x,Q^2)$$

especially at small $x \ll 1$ due to saturation/shadowing

Heavy-quarkonium including saturation

$$R_{\scriptscriptstyle {
m pA}} = R_{\scriptscriptstyle {
m pA}}^{\sf E.loss}(\hat{q}) imes R_{\scriptscriptstyle {
m pA}}^{\sf sat}(Q_s^2)$$

- Important at small x i.e. high \sqrt{s} / large rapidity
- No additional parameter
- Reduces fitted transport coefficient: $\hat{q}_0 = 0.04 \text{ GeV}^2/\text{fm}$
 - $Q_s^2(x=10^{-2})=0.14~{
 m GeV^2}$ consistent with AAMQS fits to DIS data

[Albacete et al AAMQS 2011]

