AFTER@LHC Luminosities, yields and tentative design

Cynthia Hadjidakis

SPRING 2012 AFTER Meeting Grenoble, May 10th

- Why and how a fixed target experiment at the LHC?
- Expected luminosities and quarkonium yields in pH, pA and PbA

arXiv:1202.6585

• A tentative design for AFTER

Physics opportunities with A Fixed Target ExpeRiment (AFTER) @LHC

LHC proton and lead beam extraction

- Proposal for the insertion of a bent crystal in the LHC beam
- Bent, single crystal of Si or Ge 17cm long crystal
- Distance of 7 σ to the beam to intercept and deflect the beam halo
- Proton beam extraction
- Beam loss from LHC is $\sim 10^9 \ p/s$
- Extraction efficiency of 50% \rightarrow N_{beam} = 5 108 p/s
- Ion beam extraction
- Ions extraction tested at SPS, is expected to be also possible at LHC

 \Rightarrow Next step: crystal will be installed in LS1 (2013) and tested at LHC to clean the beam (LUA9 Collaboration)

Luminosities in pH and pA @ 115 GeV

Intensity: N_{beam} = 5.10⁸ protons.s⁻¹

- Beam: 2808 bunches of 1.15×10^{11} protons = 3.2×10^{14} protons
- Bunch: Each bunch passes IP at the rate: 3.10^{5} km.s⁻¹/27 km ~ 11 kHz
- Instantaneous extraction: IP sees 2808 x 11000~3.10⁷ bunches passing every second → extract 5.10⁸/3.10⁷ ~ extract 16 protons in each bunch at each pass
- Integrated extraction: Over a 10h run: extract 5.10^8 p x 3600s.h⁻¹ x 10h=1.8 10¹³p.run⁻¹ \rightarrow extract 1.8 x 10¹³/(3.2 x 10¹⁴)~5.6% of the protons stored in the beam

Instantaneous Luminosity $L = N_{beam} \times N_{Target} = N_{beam} \times (\rho \times e \times N_A)/A$	Target (1 cm thick)	ρ (g cm ⁻³)	Α	$\begin{array}{c} \mathcal{L} \\ (\mu b^{-1} s^{-1}) \end{array}$	$\int \mathcal{L}$ (pb ⁻¹ yr ⁻¹)
$- N_{\text{beam}} = 5 \times 10^{6} \text{ p}^{1/\text{S}}$	solid H	0.088	1	26	260
- e (target thickness) = 1 cm	liquid H	0.068	1	20	200
	liquid D	0.16	2	24	240
Integrated luminosity	Be	1.85	9	62	620
 9 months running/year 	Cu	8.96	64	42	420
- 1 year $\sim 10^7$ s	W	19.1	185	31	310
	Pb	11.35	207	16	160

 \Rightarrow Large luminosity in pH(A) ranging from 0.1 and 0.6 fb⁻¹ for a 1 cm thick target

Luminosities in PbA @ 72 GeV

- Intensity: $N_{beam} = 2.10^5 \text{ Pb.s}^{-1}$
 - **Beam:** 592 bunches of $7x10^7$ ions = **4.1x10¹⁰ ions**
 - Bunch: Each bunch passes IP at the rate: 3.10^{5} km.s⁻¹/27 km ~ 11 kHz
 - Instantaneous extraction: IP sees 592 x 11000~6.5.10⁶ bunches passing every second \rightarrow extract 2.10⁵/6.510⁶ ~ extract 0.03 ions in each bunch at each pass
 - Integrated extraction: Over a 10h run: extract 2.10^5 Pb.s⁻¹ x 3600s.h⁻¹ x 10h=7.2 10⁹Pb.run⁻¹ \rightarrow extract 7.2 x 10⁹/(4.1 x 10¹⁰)~15% of the ions stored in the beam

Instantaneous Luminosity					
$L = N_{beam} \times N_{Target} = N_{beam} \times (\rho \times e \times N_A)/A$ - N. =2 x 10 ⁵ Pb/s	Target (1 cm thick)	ρ (g cm ⁻³)	Α	$\mathcal{L}_{(mb^{-1} s^{-1})}$	$\int \mathcal{L} (nb^{-1} yr^{-1})$
beam $(t_{a}, t_{a}, t$	solid H	0.088	1	11	11
- e(target thickness) = 1 cm	liquid H	0.068	1	8	8
	liquid D	0.16	2	10	10
Integrated luminosity	Be	1.85	9	25	25
 1 months running/year 	Cu	8.96	64	17	17
-1 year $\sim 10^{6}$ s	W	19.1	185	13	13
	Pb	11.35	207	7	7
				-	

 \Rightarrow AFTER provides a good luminosity to study QGP related measurements

Polarizing the hydrogen target

Instantaneous luminosity

- $L = N_{beam} \times N_{Target} = N_{beam} \times (\rho \times e \times N_A)/A$
- $N_{beam} = 5 \times 10^8 \text{ p}^+/\text{s}$
- e (target thickness) = 50 cm

Experiment	particles	energy (GeV)	\sqrt{s} (GeV)	x_p^{T}	\mathcal{L} (nb ⁻¹ s ⁻¹)
AFTER	$p + p^{\uparrow}$	7000	115	0.01÷0.9	1
COMPASS	$\pi^{\pm} + p^{\top}$	160	17.4	$0.2 \div 0.3$	2
COMPASS	$\pi^{\pm} + p^{\uparrow}$	160	17.4	~ 0.05	2
(low mass)					
RHIC	$p^{\uparrow} + p$	collider	500	$0.05 \div 0.1$	0.2
J-PARC	$p^{\uparrow} + p$	50	10	$0.5 \div 0.9$	1000
PANDA	$\bar{p} + p^{\uparrow}$	15	5.5	$0.2 \div 0.4$	0.2
(low mass)					
PAX	$p^{\uparrow} + \bar{p}$	collider	14	$0.1 \div 0.9$	0.002
NICA	$p^{\uparrow} + p$	collider	20	$0.1 \div 0.8$	0.001
RHIC	$p^{\uparrow} + p$	250	22	$0.2 \div 0.5$	2
Int.Target 1					
RHIC	$p^{\uparrow} + p$	250	22	$0.2 \div 0.5$	60
Int.Target 2					

 x_p^{\uparrow} range corresponds to Drell-Yan measurements

 \Rightarrow AFTER provides a good luminosity to sudy target spin related measurements

Quarkonium yields

Inclusive pp cross-sections

 $\begin{array}{l} B_{ll}\,d\sigma/dy|_{y=0} @~115~GeV\\ J/\psi = 20~nb\\ Y \ = 40~pb \end{array}$

Inclusive pp cross-sections

 $\begin{array}{ll} B_{ll} \ d\sigma/dy|_{y=0} @~72 \ GeV \\ J/\psi = 10 \ nb \\ Y &= 15 \ pb \end{array}$

Quarkonium yields in pp and pA @ 115 GeV

In pp

 \Rightarrow RHIC @ 200 GeV x 100 with 10 cm thick H target

 \Rightarrow Comparable to LHCb if 1m H target

 \Rightarrow Detailed studies of quarkonium production (p_T, y, polarization, different quarkonium states, ...)

In pA

 \Rightarrow RHIC @ 200 GeV x 100 with 1 cm Pb target

 \Rightarrow Detailed studies of cold nuclear matter effect in pA (p_T, y, A, ...)

Target	∫dt£	$\mathcal{B}_{\ell\ell} \frac{dN_{J/\psi}}{dy}\Big _{y=0}$	$\mathcal{B}_{\ell\ell} \frac{dN_{\Upsilon}}{dy}\Big _{y=0}$
10 cm solid H	2.6	5.2 10'	1.0 109
10 cm liquid H	2	4.0 10 ⁷	8.0 10 ⁴
10 cm liquid D	2.4	9.6 10 ⁷	1.9 10 ⁵
1 cm Be	0.62	1.1 10 ⁸	$2.2 \ 10^5$
1 cm Cu	0.42	5.3 10 ⁸	1.1 10 ⁶
1 cm W	0.31	1.1 10 ⁹	2.3 10 ⁶
1 cm Pb	0.16	6.7 10 ⁸	1.3 10 ⁶
(0.05	3.6 107	1.8 105
$pp \text{ low } P_T \text{ LHC } (14 \text{ TeV}) $	2	1.4 10 ⁹	$7.2\ 10^{6}$
pPb LHC (8.8 TeV)	10 -4	1.0 10 ⁷	$7.5 \ 10^4$
pp RHIC (200 GeV)	1.2 10-2	4.8 10 ⁵	$1.2 \ 10^3$
dAu RHIC (200 GeV)	1.5 10 ⁻⁴	$2.4 \ 10^{6}$	5.9 10 ³
dAu RHIC (62 GeV)	3.8 10 ⁻⁶	1.2 10 ⁴	1.8 10 ¹

Luminosity per year in fb⁻¹

Quarkonium yields in pH and pA @ 115 GeV

In pp

 \Rightarrow RHIC @ 200 GeV x 100 with 10 cm thick H target

 \Rightarrow Comparable to LHCb if 1m H target

 \Rightarrow Detailed studies of quarkonium production (p_T, y, polarization, different quarkonium states, ...)

In pA

 $\Rightarrow \text{RHIC} @ 200 \text{ GeV x } 100 \text{ with } 1 \text{ cm Pb}$ target $\Rightarrow \text{Detailed studies of cold nuclear matter}$ effect in pA (p_T, y, A, ...)

Geometrical Acceptance

Simulations using ALICE as a fixed target experiment at LHC quotes a Geometrical Acceptance of 8% for J/ ψ (4 π) $\rightarrow \mu^+\mu^-$ (2.5 y < 4) using the Forward Muon Spectrometer @ 115 GeV

Target	∫dt£	$\mathcal{B}_{\ell\ell} \frac{dN_{J/\psi}}{dy}\Big _{y=0}$	$\mathcal{B}_{\ell\ell} \frac{dN_{\Upsilon}}{dy}\Big _{y=0}$
10 cm solid H	2.6	5.2 10'	1.0 10 ⁵
10 cm liquid H	2	4.0 10 ⁷	8.0 10 ⁴
10 cm liquid D	2.4	9.6 10 ⁷	1.9 10 ⁵
1 cm Be	0.62	1.1 10 ⁸	$2.2 \ 10^5$
1 cm Cu	0.42	5.3 10 ⁸	1.1 10 ⁶
1 cm W	0.31	1.1 10 ⁹	2.3 10 ⁶
1 cm Pb	0.16	6.7 10 ⁸	1.3 10 ⁶
(0.05	3.6 107	1.8 10 ⁵
$pp \text{ low } P_T \text{ LHC } (14 \text{ TeV}) $	2	1.4 10 ⁹	7.2 10 ⁶
pPb LHC (8.8 TeV)	10 -4	1.0 10 ⁷	7.5 10 ⁴
pp RHIC (200 GeV)	1.2 10 ⁻²	4.8 10 ⁵	$1.2 \ 10^3$
dAu RHIC (200 GeV)	1.5 10 ⁻⁴	$2.4 \ 10^{6}$	5.9 10 ³
dAu RHIC (62 GeV)	3.8 10 ⁻⁶	$1.2 \ 10^4$	1.8 10 ¹

Luminosity per year in fb⁻¹

Quarkonium yields in PbA @ 72 GeV

Target	∫dtL	$\mathcal{B}_{\ell\ell} \frac{dN_{J/\psi}}{dy}\Big _{y=0}$	$\mathcal{B}_{\ell\ell} \frac{dN_{\Upsilon}}{dy}\Big _{y=0}$
10 cm solid H	110	4.3 10 ⁵	8.9 10 ²
10 cm liquid H	83	3.4 10 ⁵	6.9 10 ²
10 cm liquid D	100	8.0 10 ⁵	$1.6 \ 10^3$
1 cm Be	25	9.1 10 ⁵	1.9 10 ³
1 cm Cu	17	4.3 10 ⁶	0.9 10 ³
1 cm W	13	9.7 10 ⁶	1.9 10 ⁴
1 cm Pb	7	5.7 10 ⁶	1.1 104
dAu RHIC (200 GeV)	150	2.4 10 ⁶	5.9 10 ³
dAu RHIC (62 GeV)	3.8	$1.2\ 10^4$	1.8 10 ¹
AuAu RHIC (200 GeV)	2.8	4.4 10 ⁶	1.1 10 ⁴
AuAu RHIC (62 GeV)	0.13	$4.0\ 10^4$	6.1 10 ¹
pPb LHC (8.8 TeV)	100	1.0 10 ⁷	7.5 10 ⁴
PbPb LHC (5.5 TeV)	0.5	7.3 10 ⁶	3.6 10 ⁴

Luminosity per year in fb⁻¹

PbA

 \Rightarrow Same statistics than RHIC @ 200 GeV and LHC and 2 orders of magnitude larger than RHIC @ 62 GeV

 \Rightarrow Detailed studies possible for quarkonium states (ψ ', χ_c , A, ...)

Rapidity boost in a fixed target mode

- Very high boost:
- With 7 TeV beam $\gamma = 61.1$ and $y_{CMS} = 4.8$
- With 2.75 TeV beam $\gamma = 38.3$ and $y_{CMS} = 4.3$

• $\eta^* = \eta_{lab} - y_{CMS}$

forward region: η*>0 **backward region:** η*<0

Quarkonium distributions in pp @ 115 GeV

• Very high boost:

η* = η_{lab} - y_{CMS} forward region: η*>0 backward region: η*<0

• Taking $x_2 = \mathbf{M}/\sqrt{\mathbf{s} \ \mathbf{e}^{-\mathbf{y}^*}}$ - $x_2(\mathbf{J}/\Psi) = 1 \rightarrow \mathbf{y}_{\text{lab}}(\mathbf{J}/\Psi) \sim 1.2$ - $x_2(\Upsilon) = 1 \rightarrow \mathbf{y}_{\text{lab}}(\Upsilon) \sim 2.4$ **Pythia**: p (7 TeV) + p \rightarrow J/ Ψ (isub=86) J/ $\Psi \rightarrow \mu^+\mu^-$

 $\mu \rightarrow \mathbf{P}_{\mathrm{T}} \sim 1.7 \text{ GeV}$ $\mu \rightarrow \mathbf{P}_{\mathrm{L}} \sim 62 \text{ GeV}$

 $\begin{array}{ll} 1.3 < y < 3.3 & p_L (max) \sim 16 \ (50) \ GeV \\ 3.3 < y < 4.3 & p_L \sim 45 \ (150) \ GeV \\ 4.3 < y < 5.3 & p_L \sim 120 \ (300) \ GeV \end{array}$

Rapidity boost in a fixed target mode

• Very high boost:

- With 7 TeV beam $\gamma = 61.1$ and $y_{CMS} = 4.8$ - With 2.75 TeV beam $\gamma = 38.3$ and $y_{CMS} = 4.3$
- η* = η_{lab} y_{CMS} forward region: η*>0 backward region: η*<0
- Taking $x_2 = M/\sqrt{s} e^{-y^*}$ - $x_2(J/\Psi) = 1 \rightarrow y_{lab}(J/\Psi) \sim 1.2$ - $x_2(\Upsilon) = 1 \rightarrow y_{lab}(\Upsilon) \sim 2.4$
- $\eta = -\ln \tan \theta/2$ $\rightarrow \theta_{y*=0} \sim 0.9^{\circ} (16 \text{ mrad})$ $- y_{\text{lab}}(J/\Psi) \sim 4.8 \rightarrow x_2(J/\Psi) = 0.27$ $- y_{\text{lab}}(\Upsilon) \sim 4.8 \rightarrow x_2(\Upsilon) = 0.5$
- Very well placed to access backward physics

A tentative design for AFTER

- Tentative design $1.3 < y_{lab} < 5.3$
- With 7 TeV beam : $-3.5 < y^* < 0.5$
- With 2.75 TeV beam: $-3 < y^* < 1$
- $\theta_{\min} = 10 \text{ mrad}$

• Multi-purpose detector

- Vertex
- Tracking (+ dipole magnet)
- Calorimetry
- Muons
- PID (not yet considered)
- **High boost** \rightarrow forward and compact detector

Detectors' dimension

• Technology

- Vertex, tracker: pixel detectors
- EMCal: Tungsten/Si (Calice ILC)
- Muons: Magnetize Fe (Minos)

Multiplicity

Charged particles per unit of rapidity: (x 1.5 = charged+neutral) p+p @ 115 GeV ~ 2 d+Au @ 200 GeV : max ~11

Au+Au @ 62.4 GeV : max ~ 450

\rightarrow A highly granular detector is needed

R _{max} R _{min}	y < 0.5	R _{min} (cm)	R _{max} (cm)	Surface (cm ²)
	Vertex	1.5	10	~ 300
	Calo	10	40	~4700

Conclusion and outlook

- Extraction of p and Pb beam at LHC on a fixed target experiment offers many physics opportunities
- High luminosities are expected in pH, pA and pH[†] @ 115 GeV and PbA @ 72 GeV
- Large expected statistics (see quarkonium case) will allow precise measurements
- AFTER detectors should cope with the high rapidity boost and the large multiplicity expected in PbA: a highly granular and compact experimental setup is under consideration

